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Feature engineering is a process that augments the feature vector of a predictive model 

with calculated values that are designed to enhance the accuracy of the model’s 

predictions.  Research has shown that the accuracy of models such as deep neural 

networks, support vector machines, and tree/forest-based algorithms sometimes benefit 

from feature engineering. Expressions that combine one or more of the original features 

usually create these engineered features.  The choice of the exact structure of an 

engineered feature is dependent on the type of machine learning model in use.  Previous 

research demonstrated that various model families benefit from different types of 

engineered feature.  Random forests, gradient boosting machines, or other tree-based 

models might not see the same accuracy gain that an engineered feature allowed neural 

networks, generalized linear models, or other dot-product based models to achieve on the 

same data set. 

The proposed dissertation seeks to create a genetic programming-based algorithm to 

automatically engineer features that might increase the accuracy of deep neural networks. 

For a genetic programming algorithm to be effective, it must prioritize the search space 

and efficiently evaluate what it finds. The algorithm will face a search space composed of 

all possible expressions of the original feature vector and evaluate candidate-engineered 

features found in the search space.  Five experiments will provide guidance on how to 

prioritize the search space and how to most efficiently evaluate a potential engineered 

feature. Thus, the algorithm will have a greater opportunity to find engineered features 

that increase the predictive accuracy of the neural network.  Finally, a sixth experiment 

tests the accuracy improvement of neural networks on data sets when features engineered 

by the proposed algorithm are added.  
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Chapter 1 

Introduction 

This dissertation proposal seeks to create an algorithm that will automatically 

engineer features that might increase the accuracy of deep neural networks for certain 

types of predictive problems.  The proposed research builds upon, but does not duplicate, 

prior published research by the author of this dissertation.  In 2008, the Encog Machine 

Learning Framework was created and includes advanced neural network and genetic 

programming algorithms (Heaton, 2015).  The Encog genetic programming framework 

introduced an innovative algorithm that allows dynamically generated constant nodes for 

tree-based genetic programming.  As a result, constants in Encog genetic programs can 

assume any value, rather than choosing from a fixed constant pool. 

Research was performed that demonstrated the types of manually engineered 

features most likely to increase the accuracy of several models (Heaton, 2016).  The 

research presented here builds upon this earlier research by leveraging the Encog genetic 

programming framework as a key component of the proposed algorithm that will 

automatically engineer features for a feedforward neural network that might contain 

many layers.  This type of neural network is commonly referred to as a deep neural 

network (DNN).  Although it would be possible to perform this research with any 

customizable genetic programming framework or deep neural network framework, Encog 

is well suited for the task because it provides both components.  

This dissertation proposal begins by introducing both neural networks and feature 

engineering.  The dissertation problem statement is defined, and a clear goal is 

established.  Building upon this goal, the relevance of this study is demonstrated and 



2 
 

includes a discussion of the barriers and issues previously encountered by the scientific 

community.  A brief review of literature will show how this research continues previous 

investigations of deep learning.  In addition to the necessary resources and the methods, 

the research approach to achieve the dissertation goal is outlined. 

Most machine learning models, such as neural networks, support vector machines 

(Smola & Vapnik, 1997), and tree-based models, accept a vector of input data and then 

output a prediction based on this input.  For these models, the inputs are called features, 

and the complete set of inputs is called a feature vector. Most business applications of 

neural networks must map the input neurons to columns in a database; these inputs allow 

the neural network to make a prediction.  For example, an insurance company might use 

columns for age, income, height, weight, high-density lipoprotein (HDL) cholesterol, 

low-density lipoprotein (LDL) cholesterol, and triglyceride level (TGL) to make 

suggestions about an insurance applicant (B. F. Brown, 1998).   

Inputs such as HDL, LDL, and TGL are all named quantities.  This can be contrasted 

to high-dimensional inputs such as pixels, audio samples, and some time-series data.  For 

consistency, this dissertation will refer to lower-dimensional data set features that have 

specific names as named features.  This dissertation will center upon such named 

features. High-dimensional inputs that do not assign specific meaning to individual 

features fall outside the scope of this research. 

Classification and regression are the two most common applications of neural 

networks.  Regression networks predict a number, whereas classification networks assign 

a non-numeric class. For example, the maximum policy face amount is the maximum 

amount that the regression neural network suggests for an individual.  This is a dollar 
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amount, such as $100,000.  Similarly, a classification neural network can suggest the 

non-numeric underwriting class for an individual, such as preferred, standard, 

substandard, or decline. Figure 1 shows both of these neural networks. 

 

Figure 1. Regression and classification network (original features) 

The left neural network performs a regression and uses the six original input features 

to set the maximum policy face amount to issue an applicant.  The right neural network 

executes a classification and utilizes the same six input features to place the insured into 

an underwriting class.  The weights (shown as arrows) establish the final output.  A 

backpropagation algorithm fixes the weights through many sets of inputs that all have a 

known output. In this way, the neural network learns from existing data to predict future 

data. Furthermore, for simplicity, the above networks have a single hidden layer. Deep 

neural networks typically have more than two hidden layers between the input and output 
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layers (Bengio, 2009).  Every layer except the output layer can also receive a bias neuron 

that always outputs a consistent value (commonly 1.0).  Bias neurons enhance the neural 

network’s learning ability (B. Cheng & Titterington, 1994).  

Output neurons provide the neural network’s final outcome.  Before the output 

neurons can be determined, the values of previous neurons must be calculated.  The 

following equation can determine the value of each neuron: 

𝒇(𝒙, 𝒘, 𝒃) = 𝝓 (∑ (𝒘𝒊𝒙𝒊) + 𝒃
𝒊

) (1) 

The function phi (Φ) represents the transfer function, and it is typically either a 

rectified linear unit (ReLU) or one of the sigmoidal functions.  The vectors w and x 

represent the weights and input; the variable b represents the bias weight.  Calculating the 

weighted sum of the input vector (x) is the same as taking the dot product of the two 

vectors.  This is why neural networks are often considered to be part of a larger class of 

machine learning algorithms that are dot product based.  

For input neurons the vector x comes directly from the data set.  Now that the input 

neuron values are known, the first hidden layer can be calculated, using the input neurons 

as x.  Each subsequent layer is calculated with the previous layer’s output as x.  

Ultimately, the output neurons are determined, and the process is complete.    

Feature engineering adds calculated features to the input vector (Guyon, Gunn, 

Nikravesh, & Zadeh, 2008). It is possible to use feature engineering for both 

classification and regression neural networks.  Engineered features are essentially 

calculated fields that are dependent on the other fields.  Calculated fields are common in 

business applications and can help human users understand the interaction of several 

fields in the original data set.  For example, insurance underwriters benefit from 
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combining height and weight to calculate body mass index (BMI).  Likewise, insurance 

underwriters often use a ratio of the HDL, TGL and LDL cholesterol levels.  These 

calculations allow a single number to represent an aspect of the health of the applicant.  

These calculations might also be useful to the neural network.  If the BMI and HDL/LDL 

ratios were engineered as features, the classification network would look like Figure 2. 

 

Figure 2. Neural network engineered features 

In Figure 2, the BMI and HDL/LDL ratio values are appended to the feature vector 

along with the original input features. This calculation produces an augmented feature 

vector that is provided to the neural network.  These additional features might help the 

neural network to calculate the maximum face amount of a life insurance policy.  
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Similarly, these two features could also augment the feature vector of a classification 

neural network.  BMI and the HDL/LDL ratio are typical of the types of features that 

might be engineered for a neural network.  Such features are often ratios, summations, 

and powers of other features.  Adding BMI and the HDL/LDL ratio is not complicated 

because these are well-known calculations.  Similar calculations might also benefit other 

data sets.  Feature engineering often involves combining original features with ratios, 

summations, differences, and power functions.  BMI is a type of engineered feature that 

involves multiple original features and is derived manually using intuition about the data 

set. 

Problem Statement 

There is currently no automated means of engineering features specifically designed 

for deep neural network that are a combination of multiple named features from the 

original vector.  Previous automatic feature engineering work focused primarily upon the 

transformation of a single feature or upon models other than deep learning (Box & Cox, 

1964; Breiman & Friedman, 1985; Freeman & Tukey, 1950). Although model-agnostic 

genetic programming-based feature extraction algorithms have been proposed (Guo, 

Jack, & Nandi, 2005; Neshatian, 2010), they do not tailor engineered features to deep 

neural networks.  Feature engineering research for deep learning has primarily dealt with 

high-dimensional image and audio data (Blei, Ng, & Jordan, 2003; M. Brown & Lowe, 

2003; Coates, Lee, & Ng, 2011; Coates & Ng, 2012; Le, 2013; Lowe, 1999; Scott & 

Matwin, 1999).  

Machine learning performance depends on the representation of the feature vector. 

Feature engineering is an important but labor-intensive component of machine learning 
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applications (Bengio, 2013). As a result, much of the actual effort in deploying machine 

learning algorithms goes into the design of preprocessing pipelines and data 

transformations (Bengio, 2013).  

Deep neural networks (Hinton, Osindero, & Teh, 2006) can benefit from feature 

engineering.  Most research into feature engineering in the deep learning field has been in 

the areas of image and speech recognition (Bengio, 2013). Such techniques are successful 

in the high-dimension space of image processing and often amount to dimensionality 

reduction techniques (Hinton & Salakhutdinov, 2006) such as Principal Component 

Analysis (PCA) (Timmerman, 2003)  and auto-encoders (Olshausen & Field, 1996).   

Dissertation Goal 

The goal of this dissertation is to use genetic programming to analyze a data set of 

named features and to automatically create engineered features that will produce a more 

accurate deep neural network.  These engineered features will consist of mathematical 

transformations of one or more of the existing features from the data set.  Feature 

engineering will only improve accuracy when the engineered feature exposes an 

interaction that the neural network could not determine from the data set (W. Cheng, 

Kasneci, Graepel, Stern, & Herbrich, 2011).  Consequently, feature engineering will not 

benefit all data sets.  To mitigate this problem, it is important to evaluate several real 

world data sets, as well as synthetic data sets designed specifically to benefit from feature 

engineering. 

The proposed research focuses on data sets consisting of named features, as opposed 

to data sets that contain large amounts of pixels or audio sampling data. Fraud 

monitoring, sales forecasting, and intrusion detection are predictive modeling 
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applications where the input is made up of these named values.  Real-world data sets that 

provide a basis for predictive modeling can consist of a handful or of several hundred 

such named features.  Therefore, the proposed algorithm would be ineffective for the 

high-dimension tasks of computer vision and hearing applications.  Such data sets are 

outside of the scope of this dissertation research. 

Relevance and Significance 

Since the introduction of multiple linear regression, statisticians have been 

employing creative means to transform input to enhance model accuracy (Anscombe & 

Tukey, 1963; Stigler, 1986).  These transformations usually applied a single 

mathematical expression to an individual feature.  For example, one feature might apply a 

logarithm; another feature might be raised to the third power.  Transformations that apply 

an expression to a single original feature can significantly increase the accuracy of certain 

model types (Kuhn & Johnson, 2013).  

Researchers have focused much attention on automated derivation of single-feature 

transformations.  Freeman and Tukey (1950) reported on a number of useful 

transformations for linear regression.  Box and Cox (1964) conducted the seminal work 

on automatic feature transformation and invented a stochastic ad hoc algorithm that 

recommends transformations that might improve the results of linear regression.  Their 

work became known as the Box Cox transformation. Although the work by Box and Cox 

was capable of obtaining favorable transformations for linear regression, it often did not 

converge to the best one for an individual feature because of its stochastic nature.  

Numerous other transformations were created that were based on similar stochastic 

sampling techniques (Anscombe & Tukey, 1963; Mosteller & Tukey, 1977; Tukey, 
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Laurner, & Siegel, 1982).  Each of these algorithms focused on transformations of single 

features for the linear regression model. 

Breiman and Friedman (1985) took a considerable step forward by introducing the 

alternating conditional expectation (ACE) algorithm that guaranteed optimal 

transformations for linear regression.  Despite the fact that all of the aforementioned 

algorithms were designed for linear regression, they can also assist other model types.  

Because ACE was designed for linear regression, it cannot guarantee optimal 

transformations for other model types (Ziehe, Kawanabe, Harmeling, & Müller, 2001).  

Additionally, ACE transforms the entire feature vector by using separate transformations 

for each input feature, as well as the output. Engineered features do not need to come 

from the transformation of a single feature from the original vector; several original input 

features can be transformed collectively to produce favorable results (H.-F. Yu et al., 

2011). 

Feature engineering played an important role in several winning Kaggle and ACM’s 

KDD Cup submissions.  H.-F. Yu et al. (2011) reported on the successful application of 

feature engineering to the KDD Cup 2010 competition.  Ildefons and Sugiyama (2013) 

won the Kaggle Algorithmic Trading Challenge with an ensemble of models and feature 

engineering. A manual process created the features engineered for these competitions.   

Barriers and Issues 

It is a difficult and challenging problem to create an algorithm that automatically 

engineers features made up of one or more original named features and designed for a 

deep neural network.  Most automated feature engineering algorithms are built for linear 
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regression models.  Furthermore, most of these automated methods typically engineer 

features that are based upon only a single feature from the original vector.   

A linear regression model is a multi-term, first-degree expression.  Because of its 

simplicity, several mathematical techniques can verify and assure optimal 

transformations.  Deep neural networks have a much more complex structure than linear 

regression.  Therefore, engineering features for a deep neural network presents different 

challenges than those for a linear regression.  

This dissertation will seek an algorithm that combines multiple original features.  As 

the number of original features considered increases, so does the search space of the 

algorithm. This expanded search space will face the curse of dimensionality (Bellman, 

1957) and require novel solutions to limit and prioritize the search space.  However, 

ignoring the curse of dimensionality in favor of a simple theoretical approach to 

automatic feature engineering can generate every possible expression based on the 

original feature set.  Obviously, this is an infinite task.  Even with a small number of 

features and one expression type, the search space is still huge.  Therefore, it is useful to 

consider searching every combination of an engineered rational difference as 

demonstrated by the following expression:  

𝒂 − 𝒃

𝒄 − 𝒅
 

(2) 

If the data set were modestly large and contained 100 features in the original data set, 

the complete search space would be over 47 million permutations: 

𝟎. 𝟓
P𝟏𝟎𝟎

 
𝟒

𝟐
= 𝟎. 𝟓

𝟏𝟎𝟎!

(𝟏𝟎𝟎 − 𝟒)!
= 𝟒. 𝟕𝟎𝟓 ×𝟏𝟎𝟕  

(3) 
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The above permutation is divided by two in order to account for the fact that the 

resulting expression is algebraically the same as the first if the order of both the 

numerator and denominators differences are flipped.  This example is only one of the 

many types of features that the algorithm would need to check. These expressions will 

have to be prioritized so that the most likely successful candidates are explored first.  It is 

possible to prioritize candidate features for evaluation by the analysis of the importance 

of the original feature.  

Although it is necessary to reduce the search space, finding an efficient means of 

evaluating candidate feature transformations is also crucial.  An obvious test of a feature 

transformation would be to fit a neural network with the candidate feature and then fit a 

neural network without it. However, neural networks start from random weights, so it is 

advisable to fit several times and calculate the lowest error across those runs to mitigate 

the effects of a bad set of starting weights.  It might also be advantageous to try several 

neural network hidden weight architectures to ensure that a candidate feature was not 

simply reacting badly to a poorly architected neural network.  Obviously, it is not 

possible to provide such an exhaustive evaluation for each candidate feature.  The 

evaluation code must be quick and able to run in parallel.  Additionally, the neural 

networks must be structured so that they give the best assessment possible for each 

candidate-engineered feature.  All of these problems must be overcome to give the best 

possible ranking of the candidate-engineered features.  

The fact that not all data sets benefit from feature engineering creates another 

complication. As a result, it will be necessary to use a variety of data sets from the UCI 

Machine Learning Repository (Newman & Merz, 1998).  It will also be essential to 
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generate several synthetic data sets that are designed to benefit from certain types of 

engineered features.  Considerable experimentation is required to try all selected real and 

synthetic data sets against the proposed solution. 

Definitions of Terms 

Alternating Condition Expectation (ACE): A form of automatic feature transformation 

that is applied to both the input and output of a linear regression model. 

Auto-Encoder: A neural network that can learn efficient encodings for data to perform 

dimension reduction.  An auto-encoder will always have the same number of 

input and output neurons. 

Bias Neuron: A neuron that is added to the input and hidden layers that always applies a 

fixed weight.  The bias neuron performs a similar function as the y-intercept in 

linear regression. 

Box Cox Transformation: An automatic feature transformation for linear regression that 

can find helpful transformations for individual features. 

Classification: A neural network, or other model, that is trained to classify its input into 

a predefined number of classes.  A classification neural network will typically use 

a softmax function on its output and have a number of output neurons equal to the 

total number of classes.  

Constant Node: A terminal node in a genetic program that holds a constant value.   

Constant Pool: A fixed-length pool of numbers that can be assigned to constant nodes in 

a genetic program. 

Cross Entropy Loss Function: A neural network loss function that often provides 

superior training results for classification when compared to the quadratic loss 
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function. For regression problems, root mean square error (RMSE) should be 

considered. 

Crossover: An evolutionary operator, inspired by the biological concept of sexual 

reproduction in which two genomes combine traits to produce offspring.  

Crossover performs the exploitation function of an evolutionary algorithm by 

creating new genomes based on fit parents. 

Data Set: For supervised training, a data set is a collection of input values (x) and the 

expected output values (y).  The presented research only deals with supervised 

training.  The overall data set is usually divided into training and validation data 

sets. 

Deep Learning: A collection of training techniques and neural network architecture 

innovations that make it possible to effectively train neural networks with three or 

more layers. 

Deep Neural Network: A neural network with three or more layers. 

Directed Acyclic Graph (DAG): A graph where all connections contain directions and 

there are no loops. The genetic programs found in this research are represented as 

DAGs. 

Dot Product Based Model: A model that uses dot products, or weighted sums, as a 

primary component of their calculation.  Neural networks, linear regressions, and 

support vector machines for regression are all examples of dot product based 

models.  

Dynamic Constant Node: A special type of constant node found in Encog genetic 

programs that can change its value as genetic programming training progresses.  
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Contrasted with the constant pool found in many genetic programming 

frameworks. 

Elitism: When a certain number of the top genomes of a population are chosen to always 

survive into the next generation. 

Engineered Feature: A feature that is added to the feature vector of a model, such as a 

neural network, that is a mathematical transformation of one or more features 

from the original feature vector. 

Evolutionary Algorithm: An optimization algorithm that evolves better-suited 

individuals from a population by applying mutation and crossover.  The algorithm 

must balance between exploring new solutions and exploiting existing solutions to 

make them better. 

Expression: A mathematical representation that involves operators, constants, and 

variables.  Expressions are the genomes that the algorithm manipulates in this 

dissertation. 

Exploitation: The process in a search algorithm where the evaluation is constrained to 

regions close to the best solution discovered so far.   

Exploration: The process in a search algorithm where the search is broadened to new 

regions farther away from the best solution discovered so far. 

Feature Engineering: The process of creating new features by applying mathematical 

transformations to one or more of the original features. 

Feature Importance: A measurement of the importance of a single feature to the neural 

network, relative to the other features. 
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Feature Selection: The process of choosing the most important features to the neural 

network. 

Feature Vector: The complete set of inputs to a neural network.  The feature vector must 

be the same size as the input layer. 

Feature: A single value from the feature vector of a neural network or other model.  The 

features in a feature vector organize themselves around the neurons in the input 

layer of a neural network. 

Feedforward Neural Network: A neural network that contains only forward 

connections between the layers. 

Gated Recurrent Unit (GRU): A computationally efficient form of Long Short-Term 

Memory (LSTM) that combines several gates into one. 

Genetic Programming: An evolutionary algorithm that develops programs to optimize 

their output for an objective function.   

Genome: An individual in an evolutionary program. 

Gradient: A partial derivative of the loss function of a neural network with respect to a 

single weight.  The gradient is a key component in many neural network-training 

algorithms. 

Hidden Layer: A neural network layer that occurs between the input and output layers.  

A neural network can contain zero or more hidden layers. 

Input Layer: The first layer of neurons that receives the input to the neural network.  

Neural networks have a single input layer that must be the same length as the 

input vector to the neural network. 
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Interior Node: A node in a genetic program that is not a terminal node or root node; it 

has both parents and children. 

Kaggle: A website where individuals compete to achieve the best model for posted data 

sets.  Kaggle is considered as a source of benchmarking data sets in this research. 

KDD Cup: An annual competition, hosted by the Association for Computing Machinery 

(ACM) where individuals compete for the best model fit on a provided data set.  

Latent Dirichlet Allocation (LDA): A natural language processing generative statistical 

model. 

Layer: A collection of related neurons in a neural network.  A neural network typically 

has an input, output, and zero or more hidden layers. 

Learning Rate: A numeric constant that controls how quickly a model, such as a neural 

network, learns.  For backpropagation the learning rate is multiplied by the 

gradient to determine the value to change the weight. 

Linear Discriminant Analysis (LDA): Generalization of the classification algorithm 

originally proposed by Fisher for the iris data set. 

Linear Regression: A simple model that computes its output as the weighted sum of the 

input plus an intercept value. 

Log Loss Error: A common error metric for classification of neural networks. 

Long Short-Term Memory (LSTM): A type of recurrent neural network that uses a 

series of gates to learn patterns spanning much larger sequences than those that 

regular simple recurrent networks are capable of learning. 

Loss Function: A function that measures the degree to which the actual input from a 

neural network (ŷ) is different than the expected output (y). 
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Momentum: A numeric constant that attempts to prevent a neural network from falling 

into a local minimum.  This value is multiplied by the previous iteration’s weight 

change to determine a value to add to the current iteration’s weight change. 

Mutation: An evolutionary operator, inspired by the biological concept of asexual 

reproduction, in which a single genome produces offspring with a slightly altered 

set of traits than the single parent. Because mutation introduces new stochastic 

information, it fulfills the exploration component of an evolutionary algorithm. 

Named Feature: A description used in this dissertation for a feature that represents a 

specific value, such as a measurement or a characteristic of the data.  An image is 

a high-dimension input that would contain pixels, as opposed to named features. 

Natural Language Processing: Artificial intelligence algorithms that are designed to 

understand human language. 

Nesterov Momentum: A more advanced form of classic momentum that attempts to 

mitigate the effects of over correcting. 

Neural Network: A model inspired by the human brain that is composed of an input 

layer, zero or more hidden layers, and an output layer. 

Objective Function: A function that evaluates a genetic program (genome) and produces 

a score.  The evolutionary algorithm will try to create genomes that either 

maximize or minimize this score.  Most evolutionary algorithms can be 

configured to either maximize or minimize. 

One-Versus-Rest: A technique that allows multiple binary classification models to 

perform multiclass classification by training one classification model per class to 

classify between that class and the rest of the classes. 
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Output Layer: The final layer of a neural network.  This layer produces the output.  A 

regression neural network will typically have a single output neuron.  A binary 

classification neural network will also have a single output neuron.  A 

classification neural network with three or more classes will have an output 

neuron for each class. 

Preprocessing: An algorithm that prepares data for a neural network or other model.  

The feature engineering explored in this paper would function as a part of data 

preprocessing for a neural network. 

Principal Component Analysis (PCA): A form of dimension reduction that can shrink 

the size of an input vector to a smaller encoding with minimal loss of accuracy to 

the neural network. 

Quadratic Loss Function: A simple neural network loss function that uses the 

difference between the expected output and actual output of a neural network.  

The quadratic loss function should be the first choice for regression neural 

networks; however, the cross entropy loss function should be the choice for 

classification neural networks. 

Recurrent Neural Network: A neural network that contains backwards connections 

from layers to previous layers. 

Regression: A neural network or other model that is trained to produce a continuous 

value as its output.  A regression neural network will use a linear transfer function 

on its output and have a single output neuron. 

Root Mean Square Error: A neural network loss function that is typically found in 

regression problems. 
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Root Node: The node in a tree that is an ancestor of all other nodes.  The root node for a 

single-node tree is also a terminal node. 

Selection: An algorithm that chooses fit genomes for evolutionary operations such as 

crossover and mutation. 

Sigmoidal: Something that is s-shaped. 

Simple Recurrent Network (SRN): A network with only a single recurrent connection 

such as an Elman or Jordan network. 

Softmax: An algorithm that ensures that all outputs of a neural network sum to 1.0, 

thereby allowing the output to be considered as probabilities. 

Stochastic Gradient Descent (SGD): A variant of the backpropagation algorithm that 

uses a mini-batch that is randomly sampled each training iteration.  SCG has 

proven itself to be one of the most effective training algorithms, and it is the 

neural network training method for the research proposed for this dissertation. 

Symbolic Expression (S-Expression): Notation for nested list (tree-structured) data, 

invented for the Lisp programming language, which uses it for source code as 

well as data. 

Synthetic Data set: A data set that was generated to test a specific characteristic of an 

algorithm.  

Terminal Node: A node in a tree that has no children.  Terminal nodes are also referred 

to as leaf nodes. 

Training Data set: The data on which the model was actually trained.  Usually, 

validation data are also kept so that the model can be evaluated on different data 

than it was trained with. 
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Transfer Function: Applied to the weighted summations performed by the layers of a 

neural network.  All layers of a neural network have transfer functions except the 

input layer. Transfer functions are sometimes referred to as activation functions. 

Tree-Based Genetic Program: A genetic program that is represented as a tree of nodes.  

The research proposed by this dissertation uses tree-based genetic programs. 

Turing Complete: A system of data-manipulation rules that simulates any single-taped 

Turing machine.  Also referred to as computationally universal. 

Universal Approximation Theorem: A theorem that states that a feedforward network 

with a single hidden layer containing a finite number of neurons can approximate 

continuous functions. 

Validation Data set: The portion of the data set that validates model predictions on data 

that are outside of the training data set.  This data set is sometimes referred to as 

out-of-sample data. 

Xavier Weight Initialization: A neural network weight initialization algorithm that 

produces relatively quick convergence for backpropagation and limited variance 

of required iteration counts for repeated training of a neural network.   

YAML Ain't [sic] Markup Language (YAML): A common configuration file format 

that communicates operating parameters to the algorithm proposed by this 

research. 

List of Acronyms 

ACE: Alternating Condition Expectation 

ANN: Artificial Neural Network 

CGP: Cartesian Genetic Programming 
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DAG: Directed Acyclic Graph 

DBNN: Deep Belief Neural Network 

DNN: Deep Neural Network 

GP: Genetic Programming 

GRU: Gated Recurrent Unit 

IDS: Intrusion Detection System 

KDD: Knowledge Discovery in Databases 

LDA: Latent Dirichlet Allocation or Linear Discriminant Analysis 

LSTM: Long Short-Term Memory 

NEAT: NeuroEvolution of Augmenting Topologies 

ReLU: Rectified Linear Unit 

RDBMS: Relational Database Management System 

SGD: Stochastic Gradient Descent 

SRN: Simple Recurrent Neural Network 

SIFT: Scale-Invariant Feature Transform 

TD-IDF: Term Frequency–Inverse Document Frequency 

T-SNE: t-Distributed Stochastic Neighbor Embedding 

XOR: Exclusive Or 

YAML: YAML Ain't [sic] Markup Language 

Summary 

This chapter introduced proposed research into automated feature engineering.  This 

algorithm will leverage the ability of genetic programming to generate expressions that 

might become useful features for neural networks.  The features engineered by this 
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algorithm will consist of expressions that utilize one or more features from the data set’s 

original feature vector.  The resulting engineered features should increase the accuracy of 

the neural network for some data sets. 

The primary challenge of this research is to limit the infinite search space of 

expressions that combine the features of the data set.  This goal is accomplished by 

defining the types of expressions that most benefit a neural network, determining the 

importance of a feature, and prioritizing the expressions to be searched by the algorithm.  

It would also be beneficial if the algorithm could run in parallel to utilize multiple cores 

on the host computer system. 

Additionally, the algorithm needs an efficient objective function to evaluate 

candidate-engineered features against each other.  Such a function will likely be based on 

fitting a neural network model with candidate-engineered features.  This objective 

function must be designed efficiently so that it can determine in minimal time how 

effective one candidate engineered feature is compared to another.  Genetic programming 

uses this type of objective function to decide the best genomes (candidate-engineered 

features) to form the next generation of genomes. 

The remainder of this dissertation proposal is organized as follows: Chapter 2 

provides a review of the literature that directly influenced this research. Chapter 3 

presents the methodology applied in order to implement an algorithm for automated 

feature engineering.  
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Chapter 2 

Literature Review 

The research proposed for this dissertation focuses primarily upon feature 

engineering and how to apply it to deep neural networks.  Because of its ability to 

manipulate expressions, genetic programming will enable the dissertation algorithm to 

recommend engineered features.  The following areas of literature are important to the 

proposed research: 

• Feature engineering 

• Neural networks 

• Deep learning 

• Genetic programming 

There is considerable research community interest in all of these areas.  The 

following sections review current literature in these areas as it pertains to the proposed 

research: 

Feature Engineering 

The input vector of a predictive model can be augmented or transformed to enhance 

predictive performance.  In literature, this process is often referred to as feature 

engineering, feature modification, or feature extraction.  Automated variants of these 

processes are sometimes referred to as automated feature engineering or feature learning.  

For consistency, this dissertation will use the terminology of feature engineering to refer 

to this augmentation. It will use automated feature engineering to refer to an algorithm 

that automates this feature engineering. 
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These techniques grew out of the need to transform model input into forms 

conducive for linear regression (Freeman & Tukey, 1950). This transformation can be 

helpful to lower residual error on a linear regression. Box and Cox (1964) showed a 

method for determining which of several power functions might be a beneficial feature 

transformation for linear regression input.  The algorithm in their paper became known as 

the Box-Cox transformation. Power transformations simply apply exponents to the input 

features of a machine learning model.  Other mathematical functions may also perform 

transformation. Logarithms are a popular choice. Linear regression is not the only 

machine learning model that benefits from feature engineering transformations.  These 

simple transformations modify the individual features independently of each other. 

The Box and Cox (1964) relied upon a stochastic sampling of the data and does not 

necessarily guarantee an optimal set of transformations. Breiman and Friedman (1985) 

introduced the alternating conditional expectation (ACE) algorithm that could ensure 

optimal transformations for linear regression.  The ACE algorithm finds a set of optimal 

transformations for each of the predictor features, as well as the output for linear 

regression.  Although the resulting transformations were originally intended for linear 

regression, they work for other model types as well (B. Cheng & Titterington, 1994). 

Splines are a common means of feature transformation for most machine learning 

model types.  By fitting a spline to individual features, it is possible to smooth the data 

and reduce overfitting.  The number and position of knots inside the spline is a hyper-

parameter that must be determined for this transformation technique.  Splines have the 

capability of taking on close approximations of the shape of other functions.  Brosse, 
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Lek, and Dauba (1999) used splines to transform data for a neural network to predict the 

distribution of fish populations.  

Machine vision has been a popular application of feature engineering.  A relatively 

early form of feature engineering for computer vision was the Scale-Invariant Feature 

Transform (SIFT) (Lowe, 1999).  This transformation attempts the recognition of images 

at multiple scales, which is a common problem in computer vision.  A machine learning 

model that learns to recognize digits might not perceive these same digits if their size is 

doubled.  SIFT preprocesses the data and provides them in a form where images at 

multiple scales produce features that are similar. These types of features can be 

generalized for many problems and applications in machine vision, including object 

recognition and panorama stitching (M. Brown & Lowe, 2003). 

Text classification is another popular application of machine learning algorithms.  

Scott and Matwin (1999) utilized feature engineering to enhance the performance of rules 

learning for text classification. These transformations allow structure and frequency of 

the text to be generalized to a few features.  Representing textual data to a machine 

learning model produces a considerable number of dimensions.  Text classification 

commonly uses feature engineering to reduce these dimensions.  

Another application of feature engineering to text classification is the latent dirichlet 

allocation (LDA) engineered feature.  This method transforms a corpus of documents into 

document-topic mappings (Blei et al., 2003). LDA has subsequently been applied to 

spam filtering, among several document classification tasks (Bíró, Szabó, & Benczúr, 

2008) and article recommendation (C. Wang & Blei, 2011). 
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Many data are stored in relational database management systems (RDBMS) and 

consist of a number of different tables that form links, or relations, between them.  The 

relationships between these tables can be of various cardinalities, leading to relationships 

including one-to-one, one-to-many, or many-to-many.  Machine learning models 

typically require a fixed-length feature vector.  Mapping the RDBMS linked data into a 

feature vector that is suitable for a machine learning model can be difficult.  Automated 

mapping of RDBMS data is an active area of research. Bizer, Heath, and Berners-Lee 

(2009) created a system where the data are structured in a way that they can be accessed 

with semantic queries.  

Feature engineering has proven to be valuable in the Kaggle and KDD Cup data 

science competitions.  In fact, one team utilized feature engineering and an ensemble of 

machine learning models to win the KDD Cup 2010 competition (H.-F. Yu et al., 2011). 

Histograms of oriented gradients were other features presented in this competition.  W. 

Cheng et al. (2011) developed an automated feature generation algorithm for data 

organized with domain-specific knowledge.  These technologies have found many 

applications.  For example, Ildefons and Sugiyama (2013) were able to win the Kaggle 

Algorithmic Trading Challenge with an ensemble of models and feature engineering. The 

features engineered for these competitions were created manually or with knowledge 

about the specific competition problem.  Such knowledge is referred to as domain-

specific knowledge and requires human intuition that cannot currently be replicated by a 

machine. 

Feature engineering has also advanced natural language processing (NLP).  An 

example of an engineered feature for NLP is the term frequency inverse document 
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frequency (TF-IDF).  This engineered feature is essentially the ratio of the frequency of a 

word in a document compared to its occurrence in the corpus of documents (Rajaraman 

& Ullman, 2011).  TF-IDF has proven popular for text mining, text classification, and 

NLP. 

Researchers have examined the ability of machine learning algorithms to perform 

automated feature learning. These algorithms are often unsupervised in that they examine 

the data without regard to an expected outcome. Coates et al. (2011) implemented an 

unsupervised single-layer neural network for feature engineering. Principal component 

analysis (PCA) (Timmerman, 2003) and t-distributed stochastic neighbor embedding (T-

SNE) (Van der Maaten & Hinton, 2008) are dimension-reduction algorithms that have 

also proven to be successful for automated feature engineering.  Other unsupervised 

machine learning algorithms have also been applied to feature engineering.  Coates and 

Ng (2012) utilized k-means clustering for feature engineering.  

Deep neural networks have many different layers to learn complex interactions in the 

data.  Despite this advanced learning capability, deep learning also benefits from feature 

engineering.  Bengio (2013) demonstrated that feature engineering is useful for speech 

recognition, computer vision, classification, and signal processing.  Le (2013) engineered 

high-level features using unsupervised techniques to construct a deep neural network for 

signal processing. 

Lloyd, Duvenaud, Grosse, Tenenbaum, and Ghahramani (2014) employed feature 

engineering to create the Automatic Statistician project.  This system spontaneously 

models regression problems and produces readable reports.  This system can determine 

the types of transformations that might benefit individual features.  
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Kanter and Veeramachaneni (2015) invented a technique called deep feature 

synthesis that automatically transforms relational database tables into the feature vector 

needed by the typical machine learning model.  The feature vector input to a neural 

network cannot directly encode the one-to-many and many-to-many relationships that are 

common in RDBMSs. The deep feature synthesis algorithm employs SQL-like 

transformations, such as MIN, MAX, and COUNT to summarize and encode these 

relationships relationships into a feature vector.  The authors of deep feature synthesis 

reported on their algorithm’s ability to outperform some competitors in three data science 

competitions. 

Researchers have implemented automated feature engineering for specific domains.  

Davis and Foo (2016) applied automated feature detection to modeling tasks involving 

HTTP traffic and tunnels.  Cuayáhuitl (2016) created SimpleDS, a system for text 

document processing that avoids manual feature engineering by using a deep 

reinforcement learning system.  Manual feature engineering remains popular, and 

researchers have explored its value in various contexts. Bahnsen, Aouada, Stojanovic, 

and Ottersten (2016) provide guidelines and examples of feature engineering for credit 

card fraud detection.  This is an example of domain-specific knowledge.  Zhang, Huan, 

and Jiang (2016) investigated feature engineering for phishing detection.  Although these 

systems are effective in their specific domains, they do not address the problem statement 

proposed by this research of creating a generic automated feature engineering system. 

Neural Networks 

Neural networks are a biologically-inspired class of algorithms that McCulloch and 

Pitts (1943) introduced as networks composed of MP-Units.  Although neural networks 
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contain connections and neurons, they do not attempt to emulate every aspect of real 

world neurons.  Modern neural networks are more of a mathematical model than a 

biological simulator.  The seminal neural network algorithm of McCulloch and Pitts 

specifies the calculation of a single neuron, called an MP-Unit, as the weighted sum of 

the neuron’s inputs. This weighted sum is a mathematical dot product.  Nearly all neural 

networks created since their introduction in 1943 are based upon feeding dot product 

calculations to transfer functions over layers of neurons.  Deep neural networks simply 

have more layers of neurons (MP-Units). 

Initially, the weights of neural networks were handcrafted to create networks capable 

of solving simple problems. The research community has shown great interest in 

automating neural network weight selection to achieve a particular objective.  Hebb 

(1949) defined a process to describe how the connection strengths between biological 

neurons change as learning occurs.  When the organism performs actions, connections 

increase between the neurons necessary for that action.  This process became Hebb’s 

rule, and it is often informally stated as, “neurons that fire together wire together.”    

Rosenblatt (1962) introduced the perceptron that became the seminal neural network 

that contained input and output layers. The perceptron is a two-layer neural network with 

an input layer that contains weighted forward-only connections to an output layer.  The 

transfer function defined for the classic perceptron is a simple function that performs a 

threshold—it returns the value 1 if the neuron’s weighted inputs reach a value above a 

specified threshold; otherwise, it returns the value 0. Minsky and Papert (1969) described 

severe limitations in the perceptron in their monograph. They demonstrated that 
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perceptrons were incapable of learning the Exclusive Or (XOR) operator, a non-linearly 

separable problem. 

Research continued for the automatic derivation of the weights of a neural network, 

beginning with the work of Werbos (1974) when he mentioned that gradient descent 

could be used for the training of neural networks in his Ph.D. thesis.  Previously, 

researchers used gradient descent to find minimums of functions.  Rumelhart, Hinton, 

and Williams (1985) were the first to apply gradient descent to neural network training.  

Their algorithm is called the backward propagation of errors, or backpropagation.  The 

gradient of each weight is calculated and determines a change that should occur in the 

weight for the current training iteration.  The gradient of each weight is the partial 

derivative of the loss function for that weight with all other weights held constant.  

Therefore, backpropagation applies gradient descent to neural network training.  

Backpropagation was initially ineffective at training neural networks with 

significantly more than two hidden layers (Bengio, 2009).  Furthermore, it was not 

known if neural networks actually benefited from many layers.  Gybenko (1989) 

formulated the universal approximation theorem and proved that a single hidden-layer 

neural network could approximate any function. Hornik (1991) continued this research by 

showing that the multilayer feedforward architecture – and not the specific choice of the 

transfer function – gave neural networks the potential of being universal approximators. 

The universal approximation theorem implies that additional hidden layers are 

unnecessary because a single hidden-layer neural network can theoretically learn any 

problem.  Although feedforward neural networks are universal approximators, they are 

not Turing complete (Graves, Wayne, & Danihelka, 2014; Turing, 1936) without 
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extension. In other words, a feedforward neural network can emulate any function, but 

the neural network cannot replicate the operation of any computer program. 

Just as for other statistical models, it is often necessary to explain why a neural 

network produced the output that it did.  Garson (1991) created an algorithm that could 

rank the importance of the input neurons in order to reveal the behavior of neural 

networks.  Goh (1995) proposed a similar feature-ranking algorithm that analyzed the 

weights of a neural network.  In fact, many models have feature-ranking algorithms that 

analyze that individual model.  These ranking algorithms are called model dependent 

because they work only for a single type of model. 

Breiman (2001) introduced permutation feature importance in his seminal paper on 

random forests.  Although he presented this algorithm in conjunction with random 

forests, it is model-independent and appropriate for any supervised learning model.  

Consequently, permutation feature importance and neural network weight analysis will 

play a role in this dissertation.  The ranking of features that the proposed research will 

yield can become a score that functions as the genetic programming objective function. 

By definition, a feedforward neural network contains only forward connections.  

Thus, the input layer connects only to the first hidden layer, the first hidden layer 

connects only to the second hidden layer, and the final hidden layer connects only to the 

output layer.  However, recurrent neural networks allow connections to previous layers.  

Elman (1990) and Jordan (1997)  began the research of recurrent neural networks and 

introduced their simple recurrent networks (SRNs) as the Elman and Jordan neural 

networks. Figure 3 shows an Elman neural network while Figure 4 shows a Jordan neural 

network. 
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Figure 3. Elman neural network 

 

Figure 4. Jordan neural network 
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Both the Elman and Jordan networks contain a context layer (C) that will initially 

output 0.  However, the context layer always remembers the input from the previous time 

that the network was calculated.  Subsequent calculations of the neural network will 

cause the context layer to always output the input received by the layer in the previous 

iteration. The data received are stored and then output at the next calculation of the neural 

network.  The context layer in a SRN can function somewhat like a time-loop in that the 

output is always the input from the previous iteration. 

A technique known as backpropagation through time can usually train recurrent 

neural networks (Mozer, 1989; Robinson & Fallside, 1987; Werbos, 1988).  This 

technique is similar to backpropagation except that it unfolds the recurrent layers to make 

the recurrent neural network appear as one large feedforward network.  Backpropagation 

through time has a configuration parameter that specifies the number of time slices that 

the program can unfold into the network. A number of virtual layers equal to that 

configuration parameter can create the virtual network.  The same backpropagation 

algorithm that was used for feedforward networks trains the virtual network.  

Feedforward neural networks will always produce the same output for a given 

feature vector.  However, recurrent neural networks will maintain state from previous 

computations.  This state will affect the neural network output; therefore, the order that 

feature vectors are presented to the neural network will affect the output.  This capability 

makes recurrent neural networks applicable to time series prediction.  For recurrent 

neural networks, a series of events, represented as individual feature vectors, now 

produces an output. This result differs from a single feature vector in regular feedforward 

neural networks.  While recurrent neural networks are particularly adept at handling time-
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series, there are other alternatives, Balkin and Ord (2000) demonstrated encoding 

methods to use regular non-recurrent feedforward neural networks with time series 

prediction. 

One issue with SRN networks, such as Elman and Jordan, is that the longer a time 

series becomes, the less relevant a context layer.  To overcome this problem, Hochreiter 

and Schmidhuber (1997) introduced the long short-term memory (LSTM) network, 

which is shown in Figure 5. 

 

Figure 5. Long short-term memory (LSTM)    

It is important to note that this figure shows only a single neuron of a LSTM 

network.  These LSTM neurons can be placed inside of regular feedforward neural 

networks.  Usually, LSTM neurons are placed as an entire layer of such neurons.  On a 

conceptual level, the LSTM neuron functions similarly to the context neurons of the 

SRNs.  The C-labeled node, near the center of the figure, represents the context memory 
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of the node.  However, unlike SRN’s, the LSTM does not simply copy the previous 

neural network’s computation to its internal state.  The LSTM uses three gates to control 

when the input is accepted, when the internal state is forgotten, and when the internal 

state is output.  These gates are activated when the input reaches a threshold specified by 

a trained internal weight.  The backpropagation through time algorithm trains the gate 

threshold weights along with every other weight. Because it controls the internal state, 

input, and output, the LSTM is considerably more effective at recalling time series than a 

regular SRN. 

The inability to learn large numbers of hidden layers was not the only barrier to 

widespread neural network adoption.  One problem that remains for neural networks is 

the large number of hyper-parameters that a neural network contains.  A neural network 

practitioner must decide the number of layers for the network as well as the quantity of 

neurons that each of the hidden layers will contain. Prior research in the field of neural 

networks reveals that researchers have long aspired to create an algorithm that 

automatically determines the optimal structure for neural networks.  Stanley and 

Miikkulainen (2002) invented the NeuroEvolution of Augmenting Topologies (NEAT) 

neural network that utilizes a genetic algorithm to optimize the neural network structure.  

The genetic algorithm searches for the best neural network structure and weight values to 

minimize the loss function. 

Although most neural network research has shifted towards deep learning, some 

research remains on classical neural network structures.  Chea, Grenouillet, and Lek 

(2016) used a self-organizing map (SOM) to predict water quality.  A SOM allowed M. 

Wang et al. (2016) to identify the mixtures of Chinese herbal medicines.  Sobkowicz 
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(2016) implemented a NEAT neural network to perform sentiment analysis in the Polish 

language. 

Deep Learning  

While it is theoretically possible for a single-hidden layer neural network to learn 

any problem (Hornik, 1991), this outcome will not necessarily occur in practice.  

Additional hidden layers can allow the neural networks to learn hierarchies of features, 

thereby simplifying the search space. They can also find the optimal set of weights with 

less training. Unfortunately, no method to train these networks existed until the 

development of a series of innovations that introduced new transfer functions and training 

methods. McCulloch and Pitts (1943) introduced the seminal neural network calculation, 

shown in Equation 1. Many new technologies have built upon this core calculation.   

Hinton et al. (2006) first implemented a deep neural network with favorable results. 

They created a learning algorithm that could train deep network variants like those that 

Fukushima (1980) introduced for belief networks.  This discovery renewed interest in 

deep neural networks.  Several additional technologies, such as stochastic gradient 

descent (SGD) (Bertsekas, 1999), rectified linear units (ReLU) (Glorot, Bordes, & 

Bengio, 2011), and Nesterov momentum (Sutskever, Martens, Dahl, & Hinton, 2013), 

have made training of deep neural networks more efficient.  Taken together, these 

technologies are referred to as deep learning. 

Neural networks with many layers will often experience a problem in which the 

gradients become 0 with certain transfer functions.  Hochreiter (1991) was the first to 

describe this vanishing gradient problem in his Ph.D. thesis.  Prior to deep learning, most 

neural networks used a simple quadratic error function on the output layer (Bishop, 



37 
 

1995). De Boer, Kroese, Mannor, and Rubinstein (2005) introduced the cross entropy 

error function, and it often achieves better results than the simple quadratic because it 

addresses the vanishing gradient problem by allowing errors to change weights even 

when neuron’s gradient saturates (their derivatives are close to 0).   It also provides a 

more granular means of error representation than the quadratic error function for 

classification neural networks.  Therefore, the research presented in this dissertation will 

utilize the cross entropy error function for classification and root mean square error 

(RMSE) for regression. 

Neural networks must start with random weights (Bengio, 2009).  These random 

weights are frequently sampled within a specific range, such as (-1,1). However, this 

simple range initialization can occasionally produce a set of weights that are difficult for 

backpropagation to train.  As a result, researchers have shown interest for weight 

initialization algorithms that provide a good set of starting weights for backpropagation 

(Nguyen & Widrow, 1990).  Glorot and Bengio (2010) introduced what has become one 

of the most popular methods called the Xavier weight initialization algorithm. Because of 

its ability to produce consistently performing weights suitable for backpropagation 

training, the research in this dissertation will use the Xavier weight initialization 

algorithm. 

Backpropagation relies on the derivatives of the transfer functions to incrementally 

calculate, or propagate, error corrections from the output neurons back through the 

weights of a neural network. Prior to 2011, most neural network hidden layers used the 

hyperbolic tangent or the logistic transfer function, which are sigmoidal transfer 

functions.  The derivative of both of these functions saturate to 0 as x approaches either 
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positive or negative infinity, causing these transfer functions to exhibit the vanishing 

gradient problem. Glorot et al. (2011) introduced the rectified linear unit (ReLU) transfer 

function to address this problem.   

The ReLU transfer function usually achieves better training results for deep neural 

networks than the sigmoidal transfer functions.  According to current research (Bastien et 

al., 2012), the type of transfer function to use for deep neural networks is well defined for 

each layer type.  For their hidden layers, deep neural networks employ the ReLU transfer 

function.  For their output layer, most deep neural networks utilize a linear transfer 

function for regression, and a softmax transfer function for classification.  No transfer 

function is needed for the input layer.  Bastien et al. (2012) present research that follows 

this form and uses the ReLU transfer function for hidden layers and either linear or 

softmax for the output layer.  Table 1 summarizes the logistic, hyperbolic tangent, ReLU, 

linear, and softmax transfer functions: 

Table 1. Common neural network transfer functions 

Name/ 

Range 

Expression 

(Forward) 

Derivative 

(Backward) 

Graph 

(Derivatives in Red) 

Logistic/ 

Sigmoid 

[0,1] 

 

 

ϕ(𝑥) =
1

1 + 𝑒−𝑥
 ϕ'(𝑥) =

𝑒𝑥

(1 + 𝑒𝑥)2
 

 

HTan 

[-1,1] 
ϕ(𝑥) = htan(𝑥) ϕ'(𝑥) = 1 −  𝜙2(𝑥) 

 
ReLU 

[0,+∞) 
ϕ(𝑥) = max (0, 𝑥) ϕ'(𝑥) = {

𝑥 > 0     1
𝑥 ≤ 0     0
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Linear 

(-∞,+∞) 
ϕ(𝑥) = 𝑥 ϕ'(𝑥) = 1 

 
Softmax 

(-∞,+∞) 𝜙(𝑥)𝑗 =
𝑒𝑥𝑗

∑ 𝑒𝑥𝑘
‖𝑥‖
𝑘=1

 

 

NA 

NA 

 

This table indicates why ReLU often achieves better performance than a logistic or 

hyperbolic tangent.  The graph column of the table shows both the transfer function as 

well as the derivative of that transfer function.  The solid black line refers to the transfer 

function output, and the dotted red line is the derivative.  Both sigmoid-shaped transfer 

functions have derivatives that quickly saturate to 0 as it approaches either positive or 

negative infinity. The ReLU, on the other hand, does not saturate as positive infinity is 

approached.  Additionally, the much wider range of the ReLU lessens the need for the 

common practice of normalizing the inputs to values closer to the range of the sigmoidal 

transfer function in use.   

Overfitting is a frequent problem for neural networks (Masters, 1993).  A neural 

network is said to be overfit when it has been trained to the point that the network begins 

to learn the outliers in the data set. This neural network is learning to memorize, not 

generalize (Russell & Norvig, 1995).  A class of algorithms designed to combat 

overfitting is called regularization algorithms.  One of the most common forms of neural 

network regularization is to simply add a scaled summation of the weights of the neural 

network to the loss function.  This calculation will cause the training algorithm to attempt 

to lower the weights of the neural network along with the output error.  Two of the most 

common forms of this weight regularization are L1 and L2 (Ng, 2004).   
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L1 regularization, shown in the following equation, sums the weights of the neural 

network (w) and produces an error value (E) that is added to the loss function of the 

neural network. 

𝑬𝟏 =
𝝀𝟏

𝒏
∑|𝒘|

𝒘

 (4) 

It is important to note that the w vector includes only actual weights and not bias-

weights.  The value λ is a scaling factor for the effect of the L1 regularization.  If λ is too 

high, the objective of lowering the weights will overwhelm the one for achieving a lower 

error for the neural network training. This situation causes a failure of the neural network 

to converge to a low error.  The value n represents the number of training set elements.  

L2 regularization is defined similarly to L1 and is provided by the following equation: 

𝑬𝟐 = 𝝀𝟐 ∑ 𝒘𝟐

𝒘

 
(5) 

Both L1 and L2 regularization sum the weights without regard to their sign.  This 

magnitude-oriented approach is accomplished by an absolute value for L1 and a square 

for L2.  The weights are pushed towards 0 in both cases.  However, L1 has a greater 

likelihood of pushing the weights entirely to 0 and effectively pruning the weighted 

connection (Ng, 2004).  This pruning feature of L1 is especially interesting for the 

research proposed by this dissertation because it can function as a type of feature 

selection. L1 will indicate worthless engineered features by pruning them.  

L1 and L2 are not the only forms of regularization. Srivastava, Hinton, Krizhevsky, 

Sutskever, and Salakhutdinov (2014) introduced dropout as a simple regularization 
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technique for deep neural networks.  Dropout is typically implemented as a single 

dropout layer, as demonstrated by Figure 6. 

 

Figure 6. Dropout layer in a neural network 

The dashed lines in Figure 6 represent the dropped neurons. In each training 

iteration, some neurons are removed from the dropout layer.  However, neither the bias 

neurons nor the input and output neurons are ever removed.  When a neuron is discarded, 

the training iteration occurs as if that neuron and all of its connections are not present.  

However, the drop is only temporary; the neuron and its connections will return in the 

next iteration, and a different set is removed.  In this way, dropout decreases overfitting 

by preventing the network from becoming too dependent on any set of neurons.  Once 
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training is complete, all the neurons return. Dropout affects only neural networks during 

training. 

Another significant innovation that benefits deep learning is Nesterov momentum 

(Sutskever et al., 2013).  Momentum has been an important component of 

backpropagation training for some time.  Polyak (1964) introduced the seminal 

momentum algorithm that is a regularization technique for gradient ascent/descent.  

Momentum backpropagation adds a portion of the previous iteration’s weight change to 

the current iteration’s weight change. Consequently, the weight updates have the 

necessary momentum to continue through local minima and to continue the descent to 

improve the loss function. Nesterov momentum (Nesterov, 1983) further enhances the 

momentum calculation and increases the effectiveness of SGD because SGD selects 

randomly sampled mini-batches from the data set for each iteration. Nesterov momentum 

decreases the likelihood of a particularly bad mini-batch from changing the weights into 

an irreparable state.  Because of its demonstrated performance for deep neural networks, 

this dissertation will apply SGD to the neural network training. 

Researchers have also utilized deep learning for recurrent neural networks.  The 

research community has recently shown considerable interest in deep LSTM networks. 

Kalchbrenner, Danihelka, and Graves (2015) use a grid of LSTM units to achieve greater 

accuracy.  Chung, Gulcehre, Cho, and Bengio (2015) introduced the gated recurrent 

network (GRU) and added an output gate, which allows greater accuracy as the time 

series increases in length.  Unlike feedforward neural networks, LSTM and GRU are 

recurrent networks that can function as Turing machines (Graves et al., 2014). 
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Evolutionary Programming 

Holland (1975) introduced evolutionary algorithms.  Later, Deb (2001) extended this 

work to present genetic algorithms as they are known today.  The genetic algorithm is a 

generic population-based metaheuristic technique to find solutions to many real-world 

search and optimization problems. Darwinian evolution inspired these algorithms.  A 

population of potential solutions is evolved as the fittest population members produce 

subsequent generations through the genetic operators of crossover and mutation.  Each of 

these potential solutions is referred to as either a genome or a chromosome (depending on 

the implementation).  This evolutionary process is a search for the classic balance 

between exploitation and exploration.  Mutation and crossover provide the genetic 

algorithm with the ability to explore and exploit the search space. Exploration occurs 

when the mutation genetic operator introduces randomness to the population.  The 

crossover genetic operator exploits by creating new members containing traits from the 

best members of the population (Holland, 1975). 

The genetic algorithm represents potential solutions as fixed-length vectors. This 

vector might be the weights of a neural network, coefficients of an expression, or any 

other fixed-length vector that must be optimized against an objective function.  Mutation 

occurs by randomly perturbing the elements of a vector.  Crossover is achieved by 

splicing together the vectors of two or more parent vectors. 

An objective function serves to evaluate the population.  The loss function of a 

neural network is somewhat similar to the evolutionary algorithm’s objective function.  

Both the loss function and objective function provide a numeric value to be optimized.  

Some evolutionary algorithms also allow the objective function to be maximized.  The 
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choice between minimization and maximization depends on the domain of the problem.  

Although the loss function and objective function both accomplish similar goals, it is 

standard procedure to refer to the evaluation function for an evolutionary algorithm as an 

objective function. 

While many problems can be modeled as a fixed-length vector, this representation is 

a limiting factor for classic genetic algorithms. They will never improve the underlying 

neural network algorithm even though they evolve the weights to produce better results. 

To evolve better algorithms, the computer programs themselves must become the 

genomes that will be evolved (Poli, Langdon, & McPhee, 2008).  Genetic programming 

is an answer to the fixed-length issue of genetic algorithms.  

Rather than evolving a fixed-length vector, genetic programming evolves 

representations of actual computer programs to achieve an optimal score to an objective 

function.  Koza (1992) popularized this active area of research in order to automatically 

generate programs to solve specific problems.  The majority of Koza’s research 

represents the genetic programs as trees.  Although most genetic programming research 

focused on tree representation (White et al., 2013), there are other representations of the 

genetic programs, such as grids and probabilistic structures (Wolfgang  Banzhaf, 

Francone, Keller, & Nordin, 1998).  This dissertation research will use only the tree 

representation of genetic programs. 

A tree-based genetic program is implemented as a directed acyclic graph (DAG). 

The tree is composed of connected nodes.  The tree starts with a parentless root node. It 

connects to other nodes and points to still more nodes. Interior nodes with at least one 

child form the tree. Terminal nodes without children also exist. Ultimately, the tree 
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reaches all of the terminal nodes, which represents the variables and constants.  In turn, 

the operators using the variables and constants are composed of the interior nodes. The 

following expression could be represented as a tree for genetic programming: 

𝒙

𝟐
− 𝟏 + 𝟑𝐜𝐨𝐬 (𝒚) (6) 

It is common in computer science to represent these expressions as trees.  Lisp and 

Scheme are early programming languages that utilized similar tree representations called 

S-Expressions (Sussman, Abelson, & Sussman, 1983). Figure 7 shows the expression 

mentioned above as a tree: 

  

Figure 7. Expression tree for genetic programming 

It is also possible to express entire computer programs as trees.  The branching 

nature of a tree can encode if-statements and loops.  The programs encoded into these 

types of trees can be Turing complete (Teller, 1994), which means they can theoretically 

compute anything (Turing, 1936).  Additionally, nodes can be created to change the 

values of variables.  However, trees are not the only representation for genetic programs.  
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Much of the research into genetic programming has involved the best way to represent 

the genetic programs (Poli et al., 2008). 

All evolutionary algorithms must have processes for exploitation and exploration.  

For genetic programming, crossover and mutation can accomplish these functions.  The 

representation of the underlying data dictates the exact nature of the mutation and 

crossover algorithms.  Koza (1992) defined several possible algorithms for crossover and 

mutation of genetic programming trees.  The two most popular are point crossover and 

subtree mutation.  This dissertation includes point crossover and subtree mutation for its 

genetic programming solution. Figure 8 shows point crossover: 
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Figure 8. Point crossover 

To implement point crossover, two parents are chosen.  The algorithm chooses a 

random target node for parent 1 and a random source node for parent 2.  Then it creates 

the offspring by cloning parent 1 and replacing the target node on the offspring with a 

copy of the subtree at the source node on parent 2.  The crossover operation does not 

modify either parent, and the offspring may be more fit than the parents.  Most 

importantly, crossover does not introduce new information; it only recombines existing 

information.  As a result, crossover exploits rather than explores. 

Koza also defined subtree mutation, as shown in Figure 9: 

 

Figure 9. Subtree mutation 
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Mutation uses only a single parent, and, like crossover, the operation does not 

modify the parent.  The algorithm chooses a random insertion node on the parent and 

generates a new random branch. Cloning the single parent and grafting the randomly 

generated branch onto the offspring at the previously chosen random insertion node 

creates the offspring.  It is important to note that the mutation operator does add new 

information to the genome and, therefore, explores rather than exploits. 

Speciation 

It can be difficult to produce viable offspring from a crossover operation between 

two dissimilar genomes.  This fact is true in real life as well.  Two animals are considered 

to be from the same species if they are capable of producing offspring (Dawkins, 1976). 

In genetic programming, if the two parent genomes are similar, the probability increases 

for the crossover operator to produce offspring superior to the parents (Poli et al., 2008).  

Although there are several speciation strategies, this dissertation uses the strategy 

included with the Encog framework that is similar to the speciation algorithm of Stanley 

and Miikkulainen (2002) for the NEAT neural network.  In that particular algorithm, the 

larger of the two parent trees is chosen, and the percentage of the same nodes of the 

larger tree that are also in the smaller tree is calculated.  Genomes that have a percent 

similarity above a configurable threshold are considered to be in the same species.  The 

species divisions are recalculated at the end of the training iterations.  As a result, a child 

is not necessarily in the same species as the parents.  

Other Genetic Program Representations 

Trees are not the only means of representing genetic programs.  Modern computers 

portray computer programs as a series of linear instructions (Knuth, 1997), not as trees.  
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Although these programs can be written as trees, it is often not practical because the 

linear nature of programming will create tall, unbalanced trees.  This problem led a 

number of researchers to investigate a linear representation of the genetic programs. Poli 

et al. (2008), Wolfgang Banzhaf (1993), Perkis (1994), and Diplock (1998) sought to 

implement genetic programing in a fashion that mirrored the linear computer architecture.  

P.  Nordin (1994), Peter Nordin, Banzhaf, and Francone (1999), Crepeau (1995), and  

Julian F Miller and Thomson (2000) went even further and evolved bit patterns that 

represented the actual CPU machine language instruction codes.  The linear genetic 

programming systems create code that closely resembles pseudocode.  As a result, a 

human programmer can more easily interpret linear genetic programs than a tree-based 

genetic program.   

Cartesian Genetic Programming (CGP) represents the evolvable genetic programs as 

two-dimensional grids of nodes (Julian Francis  Miller & Harding, 2008).  CGP easily 

encodes computer programs, electronic circuits, neural networks, mathematical 

expressions, and other computational structures.   Fixed-length vectors serve as integer-

based grids for the crossover and mutation genetic operators.  

Many genetic programs operate exclusively on floating point data. While some 

research into genetic programming have introduced Booleans, strings and other types, 

often only a single type is used.  Such types are important; as traditional computer 

programs frequently use many different data types.  If genetic programming is to evolve 

actual computer programs, it is important to offer this same multi-type flexibility.  

Unfortunately, data types such as integer, string, and structure complicate genetic 

programming because not every operator can accept all types.  For example, the “-” 
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operator can easily be applied to integers and floating-point numbers, but it is undefined 

for strings or Booleans.  To overcome this limitation, Worm and Chiu (2013) created a 

system of grammar rules that document dependencies between operators and data. For 

example, “-” works with numbers but not strings.  These rules restrict the crossover and 

mutation operators and ensure that new programs are valid. 

Genetic Programming for Automated Feature Engineering 

Examples of the application of genetic programming to feature engineering exist in 

literature.  Although this research is similar to the proposed dissertation, the method in 

this dissertation is unique.  Specifically, this dissertation leverages unique characteristics 

of deep neural networks to constrain the infinite search space of potential engineered 

features.  Additionally, the proposed algorithm introduces a novel objective function for 

genome selection and evaluates many potential engineered feature genomes 

simultaneously.  

Guo et al. (2005) demonstrated that feature engineering could take advantage of 

genetic programming within the domain of fault classification.  These researchers 

employed the Fisher criterion as the fitness function for the genetic program. This 

criterion is typically used in conjunction with Linear Discriminant Analysis (LDA) 

(Fisher, 1936). The criterion also measures the inter-class scatter between two classes in a 

classification problem. The work of Guo et al. experimented with expressions of original 

features in order to linearly separate pairs of classification outcomes in the training set.  

This approach differs from the proposed research because it does not attempt to exclude 

engineered features that the neural network can easily synthesize on its own.  In other 

words, the research of Guo et al. is not specifically tailored to deep neural networks.  Guo 
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et al. evaluated the results of feature engineering using a shallow 14-neuron network and 

a support vector machine.  

Another application of genetic programming to feature engineering was the Ph.D. 

dissertation of Neshatian (2010).  This dissertation introduced a genetic programming-

based feature engineering algorithm and identified that objective functions that utilize an 

underlying predictive algorithm are computationally expensive.  Rather than directly 

target one specific predictive model, the Neshatian algorithm uses a decision stump, 

which is essentially a single node on a decision tree.  This single stump learns a threshold 

value that separates two classes with minimal overlap.  In this way, the approaches of 

both Guo et al. (2005) and Neshatian (2010) are similar.  To see the combined approach, 

consider a linear separation between two iris species in the classic Iris data set (Fisher, 

1936), shown in Figure 10. 

 

Figure 10. Feature engineering to linearly separate two classes 

As can be seen, the genetic programming algorithm is seeking an engineered feature 

expression that isolates two of the classes (in this case iris species Setosa and the other 

two species).  The commonly used iris data set contains the species and four 

measurements of 150 iris flowers of three species.  The engineered feature becomes what 

is commonly referred to as a one-versus-rest model to distinguish one classification from 



52 
 

the rest.  Both Neshatian (2010) and Guo et al. (2005) demonstrated this model to benefit 

feature engineering for decision trees and shallow neural networks.  However, Neshatian 

(2010) noted the inability of the algorithm to engineer features that enhanced neural 

network prediction, attributing this failing to the fact that neural networks synthesize 

comparable engineered features on their own.  However, deep neural networks do benefit 

from feature engineering (Bengio, 2013; Blei et al., 2003; M. Brown & Lowe, 2003; 

Coates et al., 2011; Coates & Ng, 2012).  Prior research also empirically demonstrated 

the benefits of feature engineering to deep neural networks (Heaton, 2016). As a result, 

the main purpose of this dissertation is to find these engineered features that increase the 

accuracy of deep neural networks. 

Summary 

Genetic programming and deep neural networks both accomplish similar tasks.  

They accept an input vector and produce either a numeric or categorical output.  

However, internally, each function differently.  Deep learning adjusts large matrices of 

weights to produce the desired output.  Genetic programming constructs computer 

programs to yield the desired output.  A genetic program is considered Turing complete; 

however, a feedforward neural network is not generally Turing complete. 

Feature engineering is a technique that preprocesses the data set to transform it into a 

new data set designed to better fit a model and to achieve better accuracy.  Typically, 

feature engineering is a manual process.  However, research interest in automating 

aspects of feature engineering exists. Because genetic programming is capable of 

evolving programs and expressions from its input features, it is logical to make it the 
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basis for a feature engineering algorithm. Creating this algorithm is the goal of this 

dissertation. The exact methodology to build it will be discussed in the next chapter.  
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Chapter 3 

Methodology  

Introduction 

The proposed research strives to build an algorithm capable of the automated 

creation of engineered features that increase the accuracy of a deep neural network.  

Unlike previous research that dealt with feature engineering, the proposed algorithm will 

allow its engineered features to draw upon multiple original values.  It can also be 

considered as a theoretical infinite search over all combinations of the original feature set. 

The algorithm will return only combinations that enhance the learning of the deep neural 

network. 

Instead of an infinite search, the proposed algorithm will perform a metaheuristic 

search. Because the search space is potential expressions, genetic programming is a 

natural choice of a metaheuristic.  Other metaheuristic search algorithms, such as 

simulated annealing, Nelder-Mead (Nelder & Mead, 1965), particle swarm optimization 

(PSO) (Kennedy, 2010), or ant colony optimization (ACO) (Colorni, Dorigo, & 

Maniezzo, 1991), might be able to be used in connection with genetic programming to 

narrow the search space.  However, the primary direction for this proposed research will 

be genetic programming. 

Algorithm Contract and Specification 

This research targets the type of deep neural network that is composed of the 

following standard components: 

• Layered Feedforward Neural Network (Rumelhart et al., 1985) 
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• ReLU or Sigmoid Transfer Function for Hidden Layers (Glorot et al., 2011) 

• Xavier Weight Initialization (Glorot & Bengio, 2010) 

• Stochastic Gradient Descent (Bottou, 2012) 

These algorithms will not be modified to achieve the goal of this research.  The 

feature engineering algorithm produced by this research should enhance accuracy for a 

standard deep neural network, as configured above, that is supported by any common 

deep learning framework, such as Theano (Bastien et al., 2012; Bergstra et al., 2010), 

CNTK (D. Yu et al., 2014), TensorFlow (Abadi et al., 2016)  or Encog (Heaton, 2015).  

However, the algorithm would not have wide application if its engineered features could 

only increase accuracy of non-standard implementations of deep learning.  

The proposed algorithm accepts an operating specification encoded as a YAML file, 

which the following example shows: 

input_dataset: input.csv 

input_x: [ 'acceleration', 'horsepower', 'cylinders' 

input_y: [ 'mpg' ] 

input_headers: true 

output_features: features.csv 

output_augmented_dataset: augmented_input.csv 

prediction_type: regression 

transfer_hidden: relu 

...other configuration settings... 

The above file specifies the configuration to analyze the standard UCI AutoMPG 

data set.  The features acceleration, horsepower and cylinders allow the model to make a 

prediction.  In this case, the prediction is mpg. The features and prediction are all column 

names in the original file. 

The following definitions are for the individual configuration items: 
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• input_data set: The name of the data set that contains the predictors (x) and 

expected outcomes (y).  The algorithm will use only the specified columns, 

except the target column(s) as the input.   

• input_x: The list of column names to use as predictors (x).  The names can 

be either symbolic or the zero-based index of the column. 

• input_y: The list of column names to use as the target(s) (y). The names can 

be either symbolic or the zero-based index of the column. 

• input_headers: Boolean to indicate if the input CSV has headers.  If there 

are no headers, the columns must be referenced by their zero-based index. 

• output_features: A CSV file that will contain a summary of the engineered 

features. 

• output_augmented_dataset: The output CSV file that contains the input 

CSV file data, along with the new engineered features. 

• prediction_type: The type of prediction and will be either classification or 

regression. 

• transfer_hidden: The type of hidden transfer function to target. It should be 

either relu, sigmoid or htan. 

As the algorithm develops, it will add more configuration items. The algorithm’s 

input file is the same input file that would train a neural network.  The output file will 

have appended engineered feature columns.  This output file could train a neural network. 

All common neural network frameworks can train from files of this format. The goal of 

this research is to show that a neural network trained from the algorithm’s augmented 
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input will produce a neural network that will allow a more accurate neural network for 

some data sets. Figure 11 summarizes this high level design: 

 

Figure 11. Algorithm high level design and contract 

Algorithm Design Scope 

The proposed algorithm will utilize the genetic programming components of Encog, 

which implement a genetic programming framework according to Koza (1992).  The 

software developed to achieve the research proposed will center primarily on the 

following aspects of genetic programming: 
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• Constraints to narrow the search domain  

• Objective function to effectively evaluate candidate features 

• Post processing analysis of genetic population 

The following sections highlight the approach for each of these components: 

Narrowing the Search Domain 

Placing search constraints upon a genetic programming algorithm is possible (Gruau, 

1996; Janikow, 1996).  These limits are sometimes implemented as an additional 

objective, producing a multi-objective genetic program.  The primary objective for a 

genetic programming algorithm is to achieve a favorable score from the deep learning 

loss function. In prior research, it was determined that certain classes of transformations, 

such as simple power functions, ratios, differences and counts do not benefit deep neural 

networks (Heaton, 2016).  Therefore, a second objective for a genetic algorithm is to 

avoid evaluating these transformations. This dissertation will expand on this previous 

work that determines undesirable expressions so that the proposed algorithm can focus on 

the most beneficial structures for deep learning.  

Genetic programming requires a palette of operators from which to construct 

expressions.  The selection of these operators is critical to a good solution.  For example, 

some problems may benefit by adding the trigonometry functions. However, the 

trigonometry functions might be unnecessary for other problems.  Sometimes problem 

specific functions are added to the operator set for genetic programming.  For the 

purposes of this research, the operator palette will be small; however, some functions that 

are specific to feature engineering will be added.  The following palette of operators are 

planned: 
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• Addition (+) 

• Subtraction (-) 

• Multiplication (*) 

• Division (/) 

• Mean of Column/Feature 

• Standard Deviation of Column/Feature 

• t-SNE Distance to Centroid of Each Class 

The final operator described above uses the dimensional reduction algorithm t-SNE 

(Van der Maaten & Hinton, 2008) to cut the dimensions of the feature vector to 3. It also 

calculates the distance between the feature vector for the current data set item and the 

centroid of each class in a classification problem.  If the data set is for regression, then 

the t-SNE operator will not be available. Other operators not included above may be 

added as this research is conducted. 

Neural networks are calculated by applying a weighted sum to each neuron, as 

demonstrated by Equation 1.  Examining the equation reveals that neural networks 

inherently have the ability to multiply and sum.  As a result, neural networks do not tend 

to benefit as much from engineered features involving simple multiplication and addition 

(Heaton, 2016).  Therefore, it might not be worth the time to discover an engineered 

feature as complex as the following equation: 

𝒇𝒆 =
𝟑𝒇𝟏𝒇𝟐

𝟐𝒇𝟑
 (7) 

In the above equation, an engineered feature (fe) was calculated using three of the 

original features.  Because neural networks can perform their own multiplication, it might 

be possible to simplify to the following equation: 
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𝒇𝒆 =
𝒇𝟏𝒇𝟐

𝒇𝟑
 (8) 

The previous two equations are not mathematically equivalent; however, the second 

equation might be sufficient because the neural network would have the ability to 

multiply 3/2 by the engineered feature.  Since the proposed research is targeted at deep 

learning, engineering parts of the feature that the neural network can easily learn during 

training should be avoided. 

Creating an Efficient Objective Function 

An objective function is needed to guide the genetic selection operator because the 

research utilizes a genetic programming algorithm. The experiments will use a multi-

objective function (Deb, 2001) that will balance between finding effective engineered 

features and avoiding engineered features that are known to be ineffective for deep neural 

networks. 

The first objective is to evaluate the value of engineered features.  To accomplish 

this task, a control neural network will first be trained with just the original features 

present.  Training of the control neural network will need to be performed only once at 

the start of the process.  A potential engineered feature will be added to the feature vector 

and to a new neural network so that it can be evaluated.  The difference between the 

control neural network’s loss function and the engineered neural network’s loss function 

will become the score returned by the objective function.  Scores above 0 do not improve 

the neural network’s predictive power; scores below 0 improve the neural network.  The 

genetic programming algorithm will strive to attain scores below 0. 

It will be critical to optimize the computational performance of the loss function.  

There are numerous opportunities to optimize this function.  One potential optimization is 
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to decrease the size of the deep neural network and the number of training iterations, 

thereby decreasing training effectiveness. However, as long as both the control and test 

neural network receive equal treatment, the results should indicate if the engineered 

features are improving the neural network loss function result.  It is important to 

remember that the goal of the objective function is not to fully train the neural network. 

Instead, the goal is to gain some indication of the effectiveness of the engineered features. 

Other novel techniques will be evaluated to produce an objective function with 

acceptable performance. 

The second objective will be to avoid the expressions that are known to not improve 

a deep neural network’s effectiveness (Heaton, 2016).  Earlier research determined that 

counts, differences, logs, power functions, rational polynomials, and radicals were not 

particularly effective engineered features for deep learning.  Similarly, earlier research 

showed that deep neural networks benefited from polynomial, ratio, and rational 

difference features.  Engineered features that resemble polynomial, ratio, and rational 

difference will receive a score bonus. 

Experimental Design 

To overcome the issues and barriers previously mentioned, a series of experiments 

will be conducted.  The results from the first four experiments will identify the design 

characteristics of the genetic programming elements identified in the previous section.  

Specifically, these experiments will show how to design constraints, measure the success 

of engineered features, and analyze the population.  The proposed experiments are listed 

here: 

• Experiment 1: Limiting the Search Space 
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• Experiment 2: Establishing Baseline 

• Experiment 3: Genetic Ensembles 

• Experiment 4: Population Analysis 

• Experiment 5: Objective Function Design 

• Experiment 6: Automated Feature Engineering 

Each of these experiments will be measured as described in the next section. 

Measures 

Neural networks are a stochastic model, and measuring the relative performance of 

the individual training runs can be difficult.  This randomness first occurs because neural 

networks are initialized with random weights.  The randomness continues with the 

stochastic gradient descent-training algorithm that chooses randomly sampled mini-

batches to train the neural network.  This randomness in the training process prevents two 

neural network training runs from producing the same training result. 

Bagging (Breiman, 1996) is an ensemble technique that turns the randomness of the 

neural network into a strength.  Bagging trains many neural networks and averages the 

results together.  All measures of neural networks performed by this dissertation will be 

bagged in a method similar to that of Prechelt (1994).  If bagging does not provide the 

stability to perform accurate measures, then dropout may also be considered.  Dropout is 

related to bagging in that each set of dropped out neurons can be considered a bagging 

cycle.  Measurement of both feature importance and neural network accuracy will use 

either bagging or dropout.  No matter the technique chosen, it will be applied across all 

measures performed in this research. 
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Two primary metrics will be considered for this dissertation: feature importance and 

network error. Feature importance determines how important an individual member of 

the feature vector is to the predictions of the neural network.  Neural network error, the 

second metric, determines the accuracy of a neural network.  Both metrics are described 

in this section. 

Feature importance can be measured for a model in two different ways: model 

agnostic and model dependent. A model agnostic calculation measures feature 

importance purely by querying the model. Internal analysis of the model is not needed.  A 

model agnostic metric will work with any type of model, including a neural network, 

random forest, or support vector machine (SVM).  Permutation feature importance 

(Breiman, 2001) is a model agnostic calculation technique that this research will 

investigate.  Additionally, the model dependent approach of analyzing the weights of the 

neural network will also be considered.  The choice of approach will remain as a 

configuration option.  Results will be reported on the approach that is the most consistent 

measure of the importance of the neural network features. 

It is also necessary to measure the accuracy of the neural network.  The proposed 

research will use the RMSE and multi-class log loss error functions.  RMSE will be the 

error function for all regression problems, and multi-class log loss will be calculated for 

classification.  RMSE (McKinney, 2012) and log loss are given in the following 

equations:  

𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒊̂ − 𝒚𝒊)𝟐𝒏‖𝒚‖

𝒊=𝟏

‖𝒚‖
 

(9) 
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𝑴𝑳𝒐𝒈𝑳𝒐𝒔𝒔 = −
𝟏

‖𝒚‖
∑ ∑ 𝒚𝒊,𝒋𝐥𝐨𝐠 (𝒚̂𝒊,𝒋)

‖𝒚‖

𝒋=𝟏

𝑵

𝒊=𝟏

 

(10) 

For both equations, N represents the number of training set elements.  The vector y-

hat represents the actual output vector from the neural network, and the vector y 

represents the expected output from the neural network.  

Whether measuring accuracy or feature importance, bagging or dropout will be 

employed, and the lowest metric will be reported.  The presentation format for the results 

of each experiment will be provided in the next sections.  

Experiment 1: Limiting the Search Space 

The first experiment continues feature engineering research performed prior to this 

dissertation (Heaton, 2016).  This earlier research demonstrated that neural networks, 

decision trees, random forests, and gradient boosting machines benefited from different 

types of engineered feature.  Additionally, the research showed that there were several 

types of engineered feature that were not particularly easy for a neural network to learn 

on its own.  If a neural network can learn to synthesize an engineered feature on its own, 

adding this feature will not be particularly helpful to the neural network. 

The search space of the proposed genetic programming-based algorithm can be 

narrowed down. The process entails constraining the genomes to expressions similar to 

expressions that are known to be difficult for the neural networks to synthesize. Heaton 

(2016) shows the effectiveness of a deep neural network learning to synthesize several 

types of engineered feature.  The neural network learned single-feature transformations, 

such as log, polynomial, rational polynomial, power, quadratic, and square root without 

problems.  However, multi-featured transformations were not as simple. The neural 
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network could calculate counts and differences. Rational difference and simple ratios 

were more difficult for the neural network. 

Experimental Design 

The first experiment will examine the effectiveness of other expression types with 

neural networks using the same technique as a previous investigation (Heaton, 2016).  

This method for testing an expression involves generating a data set that uses an outcome 

that is the result of the expression being tested as well as randomly sampled values for the 

input.  If the neural network converges to a low RMSE error, then the neural network can 

learn the expression. Furthermore, engineered features in the same format as that 

expression are more likely to produce more accurate neural networks.   

Results Format 

The results from this experiment will be reported in tabular format with the 

following columns: expression, name, RMSE/Log Loss, and genetic program RMSE.  

Consistent with Heaton (2016), the lowest RMSE/Log Loss of five training processes 

will be reported.  The result format from this experiment will appear similar to Table 2. 

Table 2. Experiment 1 results format, GP vs. neural network 

# Name Expression RMSE/ 

Log Loss 

GP RMSE/ 

Log Loss 

1-1 Ratio 𝑥1

𝑥2
 

### ### 

1-2 Ratio 

Difference 

𝑥1 − 𝑥2

𝑥3 − 𝑥4
 

### ### 

... ... ... ... ... 

 

Genetic programs can be taught to approximate expressions, just like neural 

networks.  While the original research did not evaluate genetic programming, seeing the 
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error for the genetic program might give an indication of the ability of genetic 

programming to synthesize the expressions.  It is expected that genetic programming will 

easily synthesize any of the expressions and achieve a low error.  If genetic programming 

does not achieve a low error, the hyper-parameters for the genetic programming 

algorithm will be tuned. 

Experiment 2: Establishing Baseline 

For the dissertation algorithm to be effective, engineered features from this algorithm 

must enhance neural network accuracy.  To measure this performance, a number of 

public and synthetic data sets will evaluate it.  It is necessary to collect a baseline RMSE 

or log loss of a deep neural network with that data set that receives no help from the 

dissertation algorithm.  The neural network topology, or hyper-parameters, will be 

determined experimentally.  It is important that the topology include enough hidden 

neurons that the data set can be learned with reasonable accuracy. 

Experimental Design 

The baseline experiment will provide a neural network result to compare those from 

the dissertation algorithm.  Not all data sets will benefit from feature engineering, so it is 

important to select a number of real world and synthetic data sets.  The initial collection 

of data sets is listed later in this chapter.  Additional data sets will be added or generated 

if needed to find a data set that demonstrates improvement from engineered features. 

Each neural network will be trained until the validation error no longer improves.  

Several runs will be conducted, and the lowest error will be reported. Bagging or dropout 

will be conducted to get a constant result, as previously described.  Training parameters 

and neural network topology will be set as defined in the previous section, “Measures.” 
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Results Format 

The results from this experiment will be reported in tabular format with the 

following columns: data set number, name, network topology, RMSE/Log Loss.  The 

result format from this experiment will appear similar to Table 3. 

Table 3. Experiment 2 result format, neural network baseline 

# Name Topology RMSE/Log Loss 

2-1 Auto MPG Regression: 

5:20:15:3 

### 

2-2 Wisconsin  

Breast Cancer 

Classification 

15:20:15:1 

### 

... ... ... ... 

 

Experiment 3: Genetic Ensembles 

Neural networks and genetic programs can both function as regression and classifier 

models.  It is possible to combine models that are trained to accomplish the same 

objective into ensembles (Dietterich, 2000).  A simple blending ensemble takes the 

output from several models and uses another model type such as a neural network, 

generalized linear model (GLM), or simple average to combine the results of the member 

models.   

Model ensembles work best when the member models are orthogonal. In other 

words, they do not always produce the same decision (Dietterich, 2000).  In some ways, 

the models can be considered complex engineered features that are fed into the model 

that makes the final decision.  Further experiments will refine these complex genetic 

program models into features that can augment the original feature vector. 
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Experimental Design 

Experiment 3 parallels Experiment 2 to some degree. However, instead of evaluating 

individual neural networks, ensembles of neural networks and genetic programs are 

evaluated for each of the data sets.  If the score of a particular data set is improved from 

neural network to ensemble, there is a chance that a further refined genetic programing 

engineered feature from this dissertation might be able to improve the neural networks 

accuracy. 

Two different ensemble architectures will be considered for this experiment.  The 

first ensemble, shown in Figure 12, uses a neural network as the ensemble fed by N 

genetic program expressions.  The second ensemble, shown in Figure 13, uses a 

combination of one neural network (from experiment 1) and N genetic program 

expressions to form an ensemble that is aggregated by either a generalized regression 

model (GLM) or a linear regression ensemble. 

 

Figure 12. Neural network genetic program ensemble 
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Figure 13. AVG/GLM neural network genetic program ensemble 

In both cases, the inputs to the ensemble member models are those from the original 

feature vector.  The inputs to the ensemble component (neural network, GLM or AVG) 

are the single-valued outputs from the ensemble members.  As a result, the ensemble 

component will have a number of inputs equal to the number of ensemble members.  The 

output from the ensemble component (ŷ) is considered to be the prediction of the 

ensemble model, and it is the value that allows the accuracy of the ensemble’s prediction 

to be reported. 

To determine whether to use a GLM or AVG as the ensemble, it is necessary to 

evaluate its performance for a single classification and regression data set. The results 

will be reported only for the chosen ensemble algorithm.  Additionally, the program will 

also report the results for the data sets that formed the basis for the ensemble algorithm. 

Results Format 

The results from this experiment will be reported in tabular format with the 

following columns: data set number, name, and the RMSE/Log Loss for the neural 

network ensemble, as well as the AVG or GLM ensemble.  For each of the two 



70 
 

ensembles, the RMSE/Log Loss will be reported for 3, 5, and 10 ensemble members (N). 

The result format from this experiment will appear similar to Table 4. 

Table 4. Experiment 3-result format, neural network genetic program ensemble 

  Neural Network 

Ensemble 

AVG/GLM 

Ensemble 

# Name N=3 N=5 N=10 N=3 N=5 N=10 

3-1 Auto MPG ## ## ## ## ## ## 

3-2 Wisconsin Breast Cancer ## ## ## ## ## ## 

... ... ... ... ... ... ... ... 

 

This experiment will indicate early if genetic programming can automatically 

synthesize information to the data set that the neural network alone could not determine.  

The results of Experiment 3 can be compared to Experiment 2.  For the data sets where 

the ensemble performed better than the neural network alone, there is hope that genetic 

programming can engineer a viable feature.  If Experiment 3 receives a better result on 

the ensemble than Experiment 2 did with a neural network alone, a viable feature has 

already been engineered. 

The comparative analysis of Experiments 2 and 3 will be reported in tabular form, 

similar to Table 5. 

Table 5. Experiments 2 & 3 comparative analysis format  

# Name Experiment 1 

RMSE/ 

Log Loss 

Experiment 2 

Best RMSE/ 

Log Loss 

Best 

3b-1 Auto MPG ### ### Experiment 2 

3b-1 Wisconsin Breast Cancer ### ### Experiment 1 

... ... ... ... ... 
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Experiment 4: Population Analysis 

Previous experiments fit genetic programs to function as complete models in their 

own right.  These complete models might use the entire feature vector and be complex.  

Features that are engineered by human analysis are usually simple combinations of a 

handful of the original feature vector.  The purpose of this experiment is to determine if 

the complex genetic programming models can be distilled to a representation that might 

give insight on how to combine elements of the original feature vector into viable, 

engineered features.  These simpler features might perform enough of the calculation to 

help augment the data for a neural network.  

Experimental Design 

The input data set will allow the generation of several candidate solutions.  This 

process to generate the ensemble members will be the same as in Experiment 3.  Figure 

14 shows the overall flow for generating the candidate solutions. 

 

Figure 14. Generate candidate solutions 

Unlike Experiment 3, the value of N will be larger.  More candidate solutions create 

more data from which the program can find a pattern. The program searches for the 
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pattern of pairs of input features that are often connected by a common operator, higher 

in the tree. Figure 15 shows a hypothetical example of a pattern. 

 

Figure 15. Branches with common structures 

This figure shows three branches that might be present on trees from a much larger 

forest.  The three branches always have the features a and h united by a division operator 

higher in the branch.  Of course, these branches are part of complete trees in the forest of 

candidate solutions.  Partial branches are shown for clarity and brevity.  The fact that a 

and h often occur together in a ratio might indicate that final engineered features use 

these two in a ratio.  This information could allow the construction of the features 

outright. It could also narrow the search space for a given data set.  

Results Format 

The results from this experiment will be reported in tabular format with the 

following columns: data set number, name, and the patterns found. Patterns will be 
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reported in a format such as “a/b”, “a*b”, or “(a+b)/c”.  The result format from this 

experiment will appear similar to Table 6. 

Table 6. Experiment 4 results format, patterns in genetic programs 

# Name Patterns 

4-1 Auto MPG (x1/x2) 

(x2*x3) 

((x1*x2)+x1) 

4-2 Wisconsin Breast Cancer (x2*x3) 

 

... … ... 

 

Experiment 5: Objective Function Design 

Evolutionary algorithms work through a selection process that is based on natural 

selection (Holland, 1975).  To select from among the genomes, it is necessary to evaluate 

the effectiveness of the candidate-engineered features relative to each other. Several 

algorithms determine the feature importance of the neural network.  For this research, a 

feature-ranking algorithm should be relatively stable, despite the stochastic nature of 

neural networks.  Feature ranking stability will be measured by the degree to which 

multiple neural networks produce the same ranking of features for the same data set.  

The goal of this experiment is to determine an effective feature ranking algorithm for 

the proposed dissertation research.  The two main considerations for feature ranking are 

the following: 

• Which feature-ranking algorithm is the most stable? 

• How far should a neural network be trained? 

It is desirable to keep the objective function as computationally inexpensive as 

possible.  The faster the objective function executes, the larger a search space to be 
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covered.  To evaluate feature ranking, it is not necessary to train the neural networks to 

their maximum accuracy.  Instead, it is crucial to train the neural network to the point that 

the ranking algorithm can give a stable assessment of the relative importance of each of 

the features.  This experiment will strive to provide answers to both of these concerns. 

Experimental Design 

This experiment will evaluate the ranking of the original feature vector for each of 

the data sets considered for this dissertation.  Each data set will be trained multiple times 

with its feature ranking evaluated at each training iteration.  A validation holdout set will 

allow the training algorithm to know the stopping point.  Once the validation set’s error 

no longer improves, training will stop.  The percent validation improvement will be 

reported for the iteration where the feature ranking first stabilized to the same order as the 

final feature ranking.  The idea is that training could be stopped at the point that the 

validation error improvement hits this point, and a reasonably accurate feature rank could 

be determined. 

Results Format 

Each of the data sets will be evaluated, and the minimum validation set improvement 

will be reported.  Additionally, the final feature rank will also be reported.  The results 

will appear similar to Table 7. 

Table 7. Experiment 5 results format, evaluating feature ranking 

# Name Rank Weight Permutation 

5-1 Auto MPG x3,x2,x1,x10,x11 ### ### 

5-2 Wisconsin Breast 

Cancer 

x3,x2,x4,x10,x1 ### ### 

... ... ... ... ... 
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Experiment 6: Automated Feature Engineering 

The final planned experiment brings the results of the previous five into the 

automatic feature-engineering algorithm, thereby accomplishing the objective of this 

dissertation.  The goal of Experiment 6 is to compare each data set. It will show the 

neural network validation error next to the same neural network that has been augmented 

with features that the dissertation algorithm engineered. 

Experimental Design 

This experiment will be conducted similarly to Experiment 1, except that the neural 

networks will be augmented with features that were engineered from each of the data 

sets.  The dissertation algorithm’s effectiveness will be evaluated by comparing the 

neural network’s accuracy on the augmented data set with the baseline result in 

experiment 6. Comparing the results of the dissertation algorithm to the Experiment 1 

baseline should show that some of the data sets will have improved results. 

The feature-engineering algorithm cannot be specified exactly at this point because 

the experiments 1, 3, 4, and 5 will guide its development. Experiment 2 establishes a 

baseline to compare the algorithm to. Additionally, Experiment 6 may undergo several 

iterations as the algorithm is enhanced and its performance measured.  The final 

algorithm, measured by Experiment 6, might look similar to Figure 16. 
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Figure 16. High-level overview of proposed algorithm 

This algorithm uses two neural networks.  Neural Network 1 evaluates a population 

of potential engineered features.  This population will be constrained using information 

learned from Experiment 1.  The objective function comes directly from Experiment 6.  

Experiment 4 will provide information to refine the candidate expression from the 

population into potential engineered features.  These engineered features will be ranked 

and evaluated using Neural Network 2 and examined to join a list of top engineered 

expressions. 
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The above flow chart will likely change to some degree as the experiments are 

evaluated and a system is built to automatically engineer features.  The goal will remain 

to engineer features that are able to boost the baseline performance (Experiment 1) of the 

data sets. 

Two neural networks are trained.  The first neural network will be trained on the 

original predictors (x) and the second on the augmented feature vector.  Both are trained 

to produce the outcome (y) that this algorithm does not alter. Figure 17 shows the setup 

for the final evaluation. 
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Figure 17. Dissertation algorithm evaluation 

This figure closely resembles Figure 11.  Essentially, the program forks the input 

data set to be fed to two neural networks for training.  The leftmost neural network trains 

without the proposed algorithm, and the neural network on the right trains with the 

proposed algorithm.  The objective is to determine if the neural network with augmented 

predictors can perform better than a neural network with only the original features. 
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Results Format 

The results of this experiment will show which features could be engineered for each 

of the data sets in the dissertation.  The results will contain the following columns: 

experiment number, data set name, engineered features employed, neural network error 

(RMSE or log loss), augmented neural network error (RMSE or log loss), and change by 

using algorithm.  The neural network error column will report exactly the same values as 

Experiment 1 because this experiment compares the dissertation algorithm to the neural 

network baseline. Table 8 shows the anticipated format for the results of Experiment 6: 

Table 8. Experiment 6 results format, engineered feature effectiveness 

# Name Engineered 

Features 

Baseline  

Error 

Augmented  

Error 

Error 

Change 

6-1  #### 

#### 

#### #### #### 

6-2  #### 

#### 

#### #### #### 

... ... ... ... ... ... 

 

It is assumed that the algorithm will not find an engineered feature set for each data 

set.  The number of data sets that a viable engineered feature and the degree to which the 

error of the neural network decreases will be important factors for measuring the 

usefulness of the algorithm developed. 

Real World Data sets 

The success of an automatic feature-engineering algorithm will ultimately be 

measured by its success in the generation of actual features for a real world data set.  The 

following will be the primary sources for real world data sets: 

• UCI Machine Learning Repository (Newman & Merz, 1998) 
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• PROBEN1 Datasets (Prechelt, 1994) 

• Kaggle Competitions 

Several data sets will come from the UCI machine learning set.  Time will be needed 

to standardize each of these data sets in this dissertation. Data sets that have the following 

attributes will be favored: 

• No image or audio data sets 

• At least 10 numeric (continuous) features 

• Features should be named, such as measurements, money or counts 

The following five UCI data sets appear to be good candidates for this research: 

• Adult data set 

• Wine data set 

• Car evaluation data set 

• Wine quality data set 

• Forest fires 

Other UCI data sets will be considered, as needed, for this research. 

Prechelt (1994) introduced the PROBEN1 collection of data sets.  This collection 

contains 13 standardized data sets.  The paper that presented PROBEN1 has neural 

network benchmark results.  Additionally, the PROBEN1 paper has over 900 citations, 

many of which publish additional neural network results on these data sets.  These 

characteristics make the PROBEN1 data sets good candidates for comparison in this 

study. 

Kaggle data sets may also be considered for benchmarking this dissertation.  Many 

Kaggle data sets are compatible with the previously stated desired characteristics of data 



81 
 

sets for this dissertation research.  Additionally, because Kaggle is an open competition, 

there are numerous published results for a variety of modeling techniques. 

Synthetic Data sets 

Not all data sets will see increased accuracy from engineered features, especially if 

the underlying data do not contain relationships that feature engineering can expose.  As 

a result, it will be necessary to create data sets that are designed to include features that 

are known to benefit deep neural networks.  The feature-engineering algorithm in this 

research will be tested to see if it is capable of finding the engineered features that are 

known to help neural networks predict these generated data sets. 

The program will generate data sets that contain outcomes that are designed to 

benefit from feature engineering of varying degrees of complexity.  It is necessary to 

choose engineered features that the deep neural networks cannot easily learn for 

themselves.  The goal is to engineer features that help the deep neural network—not 

features that would have been trivial for the network to learn on its own.   In previous 

research Heaton (2016) formulated a simple way to learn the types of features that benefit 

a deep neural network was devised. Training sets were generated in which the expected 

output was the output of the engineered feature.  If the model can learn to synthesize the 

output of the engineered feature, then adding this feature will not benefit the neural 

network.  This process is similar to the common neural network example of teaching 

itself to become an XOR operator.  Because neural networks can easily learn to perform 

as XOR operators, the XOR operation between any two original features would not make 

a relevant engineered feature. 
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Resources 

The hardware and software components necessary for this dissertation are all 

standard, readily available, common, and off-the-shelf personal computer system 

components and software.  Two quadcore Intel I7 Broadwell-equipped machines with 16 

gigabytes of RAM each are available for this research.  These systems will perform the 

majority of computations needed to support this research.  If additional processing power 

is required Amazon AWS virtual machines will be used. 

The Java programming language (Arnold, Gosling, & Holmes, 1996) will serve as 

the programming language to complete this research.  The Java 8 version (JDK 1.8) will 

provide the specific implementation of the programming language.  In addition, Python 

3.5 (Van Rossum, 1995) will work in conjunction with Scipy (Jones, Oliphant, Peterson, 

& al., 2001), scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi et al., 2016) for 

deep learning.  The Python machine learning packages will be useful to compare select 

neural networks and feature combinations with the Encog library.   

Encog version 3.3 (Heaton, 2015) will provide the deep learning and genetic 

programming portions of this research.  Encog provides extensive support for both deep 

learning and genetic programming.  Additionally, Encog is available for both the Java 

and C# platforms.  The author of this dissertation wrote much of the code behind Encog 

and has extensive experience with the Encog framework.  

The required equipment is currently available without restrictions. If additional 

hardware is needed, it can be acquired within a reasonable time to continue the research 

process. In the event of hardware failure, all equipment is readily available from multiple 

online sources for replacement within a week. All required software is currently available 
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for the execution of this research, and the programming components have already been 

acquired. In the event of problems with the current software or catastrophic system 

failure of the system, the application development software is available for reacquisition 

from the original sources online. 

Both the vendor and online community provide support for the programming 

environment in the event that there are issues with the software or with implementation of 

the various components. There is currently no anticipated need to perform interaction 

with end users or study participants because of the type of research project.  There are no 

anticipated costs for hardware or software beyond Amazon AWS fees.  If any Amazon 

AWS fees are incurred, they will be paid with the budget set aside to acquire additional 

and/or replacement hardware, software and processing fees. There will be no financial 

costs to Nova Southeastern University for this project. 

Summary 

This dissertation will leverage genetic programming to create an algorithm that can 

engineer features that might increase the accuracy of a deep neural network.  Not all data 

sets will contain features that can be engineered into a better feature vector for the neural 

network.  As a result, it is important to use a number of different data sets to evaluate the 

proposed algorithm.  The effectiveness of the algorithm will be determined by evaluating 

the change in error between two neural networks—one has access to the algorithm’s 

engineered features and the other does not. 

Combining the knowledge from five planned experiments will create the proposed 

algorithm.  The sixth experiment will perform a side-by-side benchmark between data 

sets augmented with features engineered by the algorithm and those that are not.  The 
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effectiveness of the algorithm can be measured by the degree to which the error decreases 

for the feature-engineered data set, when compared to an ordinary data set. 

The five experiments will evaluate how to leverage different aspects of genetic 

programming for neural network feature engineering.  Expressions that are beneficial to 

neural networks will be explored.  Objective function design will be examined.  Neural 

network feature ranking will be optimized for the quickest results.  Ensembles will 

possibly detect data sets that could benefit the most from feature engineering.  

Information gained from all of these algorithms will guide the algorithm design. 

After completing the project, the final dissertation report will be distilled and 

submitted as an academic paper to a journal or conference.  At that point, the source code 

necessary to reproduce this research will be placed on the author’s GitHub1 repository.  

For reasons of confidentiality, the source code will not be publicly distributed prior to 

formal publication of the dissertation report. 

 

  

                                                        
1 http://www.github.com/jeffheaton 
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