

Automated Feature Engineering for Deep Neural Networks with Genetic Programming

by

Jeff Heaton

A dissertation proposal submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

College of Engineering and Computing

Nova Southeastern University

2016

ii

An Abstract of a Dissertation Proposal Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Automated Feature Engineering for Deep Neural Networks with

Genetic Programming

by

Jeff Heaton

2016

Feature engineering is a process that augments the feature vector of a predictive model

with calculated values that are designed to enhance the accuracy of the model’s

predictions. Research has shown that the accuracy of models such as deep neural

networks, support vector machines, and tree/forest-based algorithms sometimes benefit

from feature engineering. Expressions that combine one or more of the original features

usually create these engineered features. The choice of the exact structure of an

engineered feature is dependent on the type of machine learning model in use. Previous

research demonstrated that various model families benefit from different types of

engineered feature. Random forests, gradient boosting machines, or other tree-based

models might not see the same accuracy gain that an engineered feature allowed neural

networks, generalized linear models, or other dot-product based models to achieve on the

same data set.

The proposed dissertation seeks to create a genetic programming-based algorithm to

automatically engineer features that might increase the accuracy of deep neural networks.

For a genetic programming algorithm to be effective, it must prioritize the search space

and efficiently evaluate what it finds. The algorithm will face a search space composed of

all possible expressions of the original feature vector and evaluate candidate-engineered

features found in the search space. Five experiments will provide guidance on how to

prioritize the search space and how to most efficiently evaluate a potential engineered

feature. Thus, the algorithm will have a greater opportunity to find engineered features

that increase the predictive accuracy of the neural network. Finally, a sixth experiment

tests the accuracy improvement of neural networks on data sets when features engineered

by the proposed algorithm are added.

iii

Table of Contents

List of Tables v

List of Figures vi

1. Introduction 1

Problem Statement 6

Dissertation Goal 7

Relevance and Significance 8

Barriers and Issues 9

Definitions of Terms 12

List of Acronyms 20

Summary 21

2. Literature Review 23

Feature Engineering 23

Neural Networks 28

Deep Learning 36

Evolutionary Programming 43

Speciation 48

Other Genetic Program Representations 48

Genetic Programming for Automated Feature Engineering 50

Summary 52

3. Methodology 54

Introduction 54

Algorithm Contract and Specification 54

Algorithm Design Scope 57

Narrowing the Search Domain 58

Creating an Efficient Objective Function 60

Experimental Design 61

Measures 62

Experiment 1: Limiting the Search Space 64

Experimental Design 65

Results Format 65

Experiment 2: Establishing Baseline 66

Experimental Design 66

iv

Results Format 67

Experiment 3: Genetic Ensembles 67

Experimental Design 68

Results Format 69

Experiment 4: Population Analysis 71

Experimental Design 71

Results Format 72

Experiment 5: Objective Function Design 73

Experimental Design 74

Results Format 74

Experiment 6: Automated Feature Engineering 75

Experimental Design 75

Results Format 79

Real World Data sets 79

Synthetic Data sets 81

Resources 82

Summary 83

4. References 85

v

List of Tables

1. Common neural network transfer functions 38

2. Experiment 1 results format, GP vs. neural network 65

3. Experiment 2 result format, neural network baseline 67

4. Experiment 3-result format, neural network genetic program ensemble 70
5. Experiments 2 & 3 comparative analysis format 70

6. Experiment 4 results format, patterns in genetic programs 73

7. Experiment 5 results format, evaluating feature ranking 74

8. Experiment 6 results format, engineered feature effectiveness 79

vi

List of Figures

1. Regression and classification network (original features) 3

2. Neural network engineered features 5

3. Elman neural network 32

4. Jordan neural network 32
5. Long short-term memory (LSTM) 34

6. Dropout layer in a neural network 41

7. Expression tree for genetic programming 45

8. Point crossover 47
9. Subtree mutation 47

10. Feature engineering to linearly separate two classes 51

11. Algorithm high level design and contract 57
12. Neural network genetic program ensemble 68

13. AVG/GLM neural network genetic program ensemble 69

14. Generate candidate solutions 71

15. Branches with common structures 72
16. High-level overview of proposed algorithm 76

17. Dissertation algorithm evaluation 78

1

Chapter 1

Introduction

This dissertation proposal seeks to create an algorithm that will automatically

engineer features that might increase the accuracy of deep neural networks for certain

types of predictive problems. The proposed research builds upon, but does not duplicate,

prior published research by the author of this dissertation. In 2008, the Encog Machine

Learning Framework was created and includes advanced neural network and genetic

programming algorithms (Heaton, 2015). The Encog genetic programming framework

introduced an innovative algorithm that allows dynamically generated constant nodes for

tree-based genetic programming. As a result, constants in Encog genetic programs can

assume any value, rather than choosing from a fixed constant pool.

Research was performed that demonstrated the types of manually engineered

features most likely to increase the accuracy of several models (Heaton, 2016). The

research presented here builds upon this earlier research by leveraging the Encog genetic

programming framework as a key component of the proposed algorithm that will

automatically engineer features for a feedforward neural network that might contain

many layers. This type of neural network is commonly referred to as a deep neural

network (DNN). Although it would be possible to perform this research with any

customizable genetic programming framework or deep neural network framework, Encog

is well suited for the task because it provides both components.

This dissertation proposal begins by introducing both neural networks and feature

engineering. The dissertation problem statement is defined, and a clear goal is

established. Building upon this goal, the relevance of this study is demonstrated and

2

includes a discussion of the barriers and issues previously encountered by the scientific

community. A brief review of literature will show how this research continues previous

investigations of deep learning. In addition to the necessary resources and the methods,

the research approach to achieve the dissertation goal is outlined.

Most machine learning models, such as neural networks, support vector machines

(Smola & Vapnik, 1997), and tree-based models, accept a vector of input data and then

output a prediction based on this input. For these models, the inputs are called features,

and the complete set of inputs is called a feature vector. Most business applications of

neural networks must map the input neurons to columns in a database; these inputs allow

the neural network to make a prediction. For example, an insurance company might use

columns for age, income, height, weight, high-density lipoprotein (HDL) cholesterol,

low-density lipoprotein (LDL) cholesterol, and triglyceride level (TGL) to make

suggestions about an insurance applicant (B. F. Brown, 1998).

Inputs such as HDL, LDL, and TGL are all named quantities. This can be contrasted

to high-dimensional inputs such as pixels, audio samples, and some time-series data. For

consistency, this dissertation will refer to lower-dimensional data set features that have

specific names as named features. This dissertation will center upon such named

features. High-dimensional inputs that do not assign specific meaning to individual

features fall outside the scope of this research.

Classification and regression are the two most common applications of neural

networks. Regression networks predict a number, whereas classification networks assign

a non-numeric class. For example, the maximum policy face amount is the maximum

amount that the regression neural network suggests for an individual. This is a dollar

3

amount, such as $100,000. Similarly, a classification neural network can suggest the

non-numeric underwriting class for an individual, such as preferred, standard,

substandard, or decline. Figure 1 shows both of these neural networks.

Figure 1. Regression and classification network (original features)

The left neural network performs a regression and uses the six original input features

to set the maximum policy face amount to issue an applicant. The right neural network

executes a classification and utilizes the same six input features to place the insured into

an underwriting class. The weights (shown as arrows) establish the final output. A

backpropagation algorithm fixes the weights through many sets of inputs that all have a

known output. In this way, the neural network learns from existing data to predict future

data. Furthermore, for simplicity, the above networks have a single hidden layer. Deep

neural networks typically have more than two hidden layers between the input and output

4

layers (Bengio, 2009). Every layer except the output layer can also receive a bias neuron

that always outputs a consistent value (commonly 1.0). Bias neurons enhance the neural

network’s learning ability (B. Cheng & Titterington, 1994).

Output neurons provide the neural network’s final outcome. Before the output

neurons can be determined, the values of previous neurons must be calculated. The

following equation can determine the value of each neuron:

𝒇(𝒙, 𝒘, 𝒃) = 𝝓 (∑ (𝒘𝒊𝒙𝒊) + 𝒃
𝒊

) (1)

The function phi (Φ) represents the transfer function, and it is typically either a

rectified linear unit (ReLU) or one of the sigmoidal functions. The vectors w and x

represent the weights and input; the variable b represents the bias weight. Calculating the

weighted sum of the input vector (x) is the same as taking the dot product of the two

vectors. This is why neural networks are often considered to be part of a larger class of

machine learning algorithms that are dot product based.

For input neurons the vector x comes directly from the data set. Now that the input

neuron values are known, the first hidden layer can be calculated, using the input neurons

as x. Each subsequent layer is calculated with the previous layer’s output as x.

Ultimately, the output neurons are determined, and the process is complete.

Feature engineering adds calculated features to the input vector (Guyon, Gunn,

Nikravesh, & Zadeh, 2008). It is possible to use feature engineering for both

classification and regression neural networks. Engineered features are essentially

calculated fields that are dependent on the other fields. Calculated fields are common in

business applications and can help human users understand the interaction of several

fields in the original data set. For example, insurance underwriters benefit from

5

combining height and weight to calculate body mass index (BMI). Likewise, insurance

underwriters often use a ratio of the HDL, TGL and LDL cholesterol levels. These

calculations allow a single number to represent an aspect of the health of the applicant.

These calculations might also be useful to the neural network. If the BMI and HDL/LDL

ratios were engineered as features, the classification network would look like Figure 2.

Figure 2. Neural network engineered features

In Figure 2, the BMI and HDL/LDL ratio values are appended to the feature vector

along with the original input features. This calculation produces an augmented feature

vector that is provided to the neural network. These additional features might help the

neural network to calculate the maximum face amount of a life insurance policy.

6

Similarly, these two features could also augment the feature vector of a classification

neural network. BMI and the HDL/LDL ratio are typical of the types of features that

might be engineered for a neural network. Such features are often ratios, summations,

and powers of other features. Adding BMI and the HDL/LDL ratio is not complicated

because these are well-known calculations. Similar calculations might also benefit other

data sets. Feature engineering often involves combining original features with ratios,

summations, differences, and power functions. BMI is a type of engineered feature that

involves multiple original features and is derived manually using intuition about the data

set.

Problem Statement

There is currently no automated means of engineering features specifically designed

for deep neural network that are a combination of multiple named features from the

original vector. Previous automatic feature engineering work focused primarily upon the

transformation of a single feature or upon models other than deep learning (Box & Cox,

1964; Breiman & Friedman, 1985; Freeman & Tukey, 1950). Although model-agnostic

genetic programming-based feature extraction algorithms have been proposed (Guo,

Jack, & Nandi, 2005; Neshatian, 2010), they do not tailor engineered features to deep

neural networks. Feature engineering research for deep learning has primarily dealt with

high-dimensional image and audio data (Blei, Ng, & Jordan, 2003; M. Brown & Lowe,

2003; Coates, Lee, & Ng, 2011; Coates & Ng, 2012; Le, 2013; Lowe, 1999; Scott &

Matwin, 1999).

Machine learning performance depends on the representation of the feature vector.

Feature engineering is an important but labor-intensive component of machine learning

7

applications (Bengio, 2013). As a result, much of the actual effort in deploying machine

learning algorithms goes into the design of preprocessing pipelines and data

transformations (Bengio, 2013).

Deep neural networks (Hinton, Osindero, & Teh, 2006) can benefit from feature

engineering. Most research into feature engineering in the deep learning field has been in

the areas of image and speech recognition (Bengio, 2013). Such techniques are successful

in the high-dimension space of image processing and often amount to dimensionality

reduction techniques (Hinton & Salakhutdinov, 2006) such as Principal Component

Analysis (PCA) (Timmerman, 2003) and auto-encoders (Olshausen & Field, 1996).

Dissertation Goal

The goal of this dissertation is to use genetic programming to analyze a data set of

named features and to automatically create engineered features that will produce a more

accurate deep neural network. These engineered features will consist of mathematical

transformations of one or more of the existing features from the data set. Feature

engineering will only improve accuracy when the engineered feature exposes an

interaction that the neural network could not determine from the data set (W. Cheng,

Kasneci, Graepel, Stern, & Herbrich, 2011). Consequently, feature engineering will not

benefit all data sets. To mitigate this problem, it is important to evaluate several real

world data sets, as well as synthetic data sets designed specifically to benefit from feature

engineering.

The proposed research focuses on data sets consisting of named features, as opposed

to data sets that contain large amounts of pixels or audio sampling data. Fraud

monitoring, sales forecasting, and intrusion detection are predictive modeling

8

applications where the input is made up of these named values. Real-world data sets that

provide a basis for predictive modeling can consist of a handful or of several hundred

such named features. Therefore, the proposed algorithm would be ineffective for the

high-dimension tasks of computer vision and hearing applications. Such data sets are

outside of the scope of this dissertation research.

Relevance and Significance

Since the introduction of multiple linear regression, statisticians have been

employing creative means to transform input to enhance model accuracy (Anscombe &

Tukey, 1963; Stigler, 1986). These transformations usually applied a single

mathematical expression to an individual feature. For example, one feature might apply a

logarithm; another feature might be raised to the third power. Transformations that apply

an expression to a single original feature can significantly increase the accuracy of certain

model types (Kuhn & Johnson, 2013).

Researchers have focused much attention on automated derivation of single-feature

transformations. Freeman and Tukey (1950) reported on a number of useful

transformations for linear regression. Box and Cox (1964) conducted the seminal work

on automatic feature transformation and invented a stochastic ad hoc algorithm that

recommends transformations that might improve the results of linear regression. Their

work became known as the Box Cox transformation. Although the work by Box and Cox

was capable of obtaining favorable transformations for linear regression, it often did not

converge to the best one for an individual feature because of its stochastic nature.

Numerous other transformations were created that were based on similar stochastic

sampling techniques (Anscombe & Tukey, 1963; Mosteller & Tukey, 1977; Tukey,

9

Laurner, & Siegel, 1982). Each of these algorithms focused on transformations of single

features for the linear regression model.

Breiman and Friedman (1985) took a considerable step forward by introducing the

alternating conditional expectation (ACE) algorithm that guaranteed optimal

transformations for linear regression. Despite the fact that all of the aforementioned

algorithms were designed for linear regression, they can also assist other model types.

Because ACE was designed for linear regression, it cannot guarantee optimal

transformations for other model types (Ziehe, Kawanabe, Harmeling, & Müller, 2001).

Additionally, ACE transforms the entire feature vector by using separate transformations

for each input feature, as well as the output. Engineered features do not need to come

from the transformation of a single feature from the original vector; several original input

features can be transformed collectively to produce favorable results (H.-F. Yu et al.,

2011).

Feature engineering played an important role in several winning Kaggle and ACM’s

KDD Cup submissions. H.-F. Yu et al. (2011) reported on the successful application of

feature engineering to the KDD Cup 2010 competition. Ildefons and Sugiyama (2013)

won the Kaggle Algorithmic Trading Challenge with an ensemble of models and feature

engineering. A manual process created the features engineered for these competitions.

Barriers and Issues

It is a difficult and challenging problem to create an algorithm that automatically

engineers features made up of one or more original named features and designed for a

deep neural network. Most automated feature engineering algorithms are built for linear

10

regression models. Furthermore, most of these automated methods typically engineer

features that are based upon only a single feature from the original vector.

A linear regression model is a multi-term, first-degree expression. Because of its

simplicity, several mathematical techniques can verify and assure optimal

transformations. Deep neural networks have a much more complex structure than linear

regression. Therefore, engineering features for a deep neural network presents different

challenges than those for a linear regression.

This dissertation will seek an algorithm that combines multiple original features. As

the number of original features considered increases, so does the search space of the

algorithm. This expanded search space will face the curse of dimensionality (Bellman,

1957) and require novel solutions to limit and prioritize the search space. However,

ignoring the curse of dimensionality in favor of a simple theoretical approach to

automatic feature engineering can generate every possible expression based on the

original feature set. Obviously, this is an infinite task. Even with a small number of

features and one expression type, the search space is still huge. Therefore, it is useful to

consider searching every combination of an engineered rational difference as

demonstrated by the following expression:

𝒂 − 𝒃

𝒄 − 𝒅

(2)

If the data set were modestly large and contained 100 features in the original data set,

the complete search space would be over 47 million permutations:

𝟎. 𝟓
P𝟏𝟎𝟎

𝟒

𝟐
= 𝟎. 𝟓

𝟏𝟎𝟎!

(𝟏𝟎𝟎 − 𝟒)!
= 𝟒. 𝟕𝟎𝟓 ×𝟏𝟎𝟕

(3)

11

The above permutation is divided by two in order to account for the fact that the

resulting expression is algebraically the same as the first if the order of both the

numerator and denominators differences are flipped. This example is only one of the

many types of features that the algorithm would need to check. These expressions will

have to be prioritized so that the most likely successful candidates are explored first. It is

possible to prioritize candidate features for evaluation by the analysis of the importance

of the original feature.

Although it is necessary to reduce the search space, finding an efficient means of

evaluating candidate feature transformations is also crucial. An obvious test of a feature

transformation would be to fit a neural network with the candidate feature and then fit a

neural network without it. However, neural networks start from random weights, so it is

advisable to fit several times and calculate the lowest error across those runs to mitigate

the effects of a bad set of starting weights. It might also be advantageous to try several

neural network hidden weight architectures to ensure that a candidate feature was not

simply reacting badly to a poorly architected neural network. Obviously, it is not

possible to provide such an exhaustive evaluation for each candidate feature. The

evaluation code must be quick and able to run in parallel. Additionally, the neural

networks must be structured so that they give the best assessment possible for each

candidate-engineered feature. All of these problems must be overcome to give the best

possible ranking of the candidate-engineered features.

The fact that not all data sets benefit from feature engineering creates another

complication. As a result, it will be necessary to use a variety of data sets from the UCI

Machine Learning Repository (Newman & Merz, 1998). It will also be essential to

12

generate several synthetic data sets that are designed to benefit from certain types of

engineered features. Considerable experimentation is required to try all selected real and

synthetic data sets against the proposed solution.

Definitions of Terms

Alternating Condition Expectation (ACE): A form of automatic feature transformation

that is applied to both the input and output of a linear regression model.

Auto-Encoder: A neural network that can learn efficient encodings for data to perform

dimension reduction. An auto-encoder will always have the same number of

input and output neurons.

Bias Neuron: A neuron that is added to the input and hidden layers that always applies a

fixed weight. The bias neuron performs a similar function as the y-intercept in

linear regression.

Box Cox Transformation: An automatic feature transformation for linear regression that

can find helpful transformations for individual features.

Classification: A neural network, or other model, that is trained to classify its input into

a predefined number of classes. A classification neural network will typically use

a softmax function on its output and have a number of output neurons equal to the

total number of classes.

Constant Node: A terminal node in a genetic program that holds a constant value.

Constant Pool: A fixed-length pool of numbers that can be assigned to constant nodes in

a genetic program.

Cross Entropy Loss Function: A neural network loss function that often provides

superior training results for classification when compared to the quadratic loss

13

function. For regression problems, root mean square error (RMSE) should be

considered.

Crossover: An evolutionary operator, inspired by the biological concept of sexual

reproduction in which two genomes combine traits to produce offspring.

Crossover performs the exploitation function of an evolutionary algorithm by

creating new genomes based on fit parents.

Data Set: For supervised training, a data set is a collection of input values (x) and the

expected output values (y). The presented research only deals with supervised

training. The overall data set is usually divided into training and validation data

sets.

Deep Learning: A collection of training techniques and neural network architecture

innovations that make it possible to effectively train neural networks with three or

more layers.

Deep Neural Network: A neural network with three or more layers.

Directed Acyclic Graph (DAG): A graph where all connections contain directions and

there are no loops. The genetic programs found in this research are represented as

DAGs.

Dot Product Based Model: A model that uses dot products, or weighted sums, as a

primary component of their calculation. Neural networks, linear regressions, and

support vector machines for regression are all examples of dot product based

models.

Dynamic Constant Node: A special type of constant node found in Encog genetic

programs that can change its value as genetic programming training progresses.

14

Contrasted with the constant pool found in many genetic programming

frameworks.

Elitism: When a certain number of the top genomes of a population are chosen to always

survive into the next generation.

Engineered Feature: A feature that is added to the feature vector of a model, such as a

neural network, that is a mathematical transformation of one or more features

from the original feature vector.

Evolutionary Algorithm: An optimization algorithm that evolves better-suited

individuals from a population by applying mutation and crossover. The algorithm

must balance between exploring new solutions and exploiting existing solutions to

make them better.

Expression: A mathematical representation that involves operators, constants, and

variables. Expressions are the genomes that the algorithm manipulates in this

dissertation.

Exploitation: The process in a search algorithm where the evaluation is constrained to

regions close to the best solution discovered so far.

Exploration: The process in a search algorithm where the search is broadened to new

regions farther away from the best solution discovered so far.

Feature Engineering: The process of creating new features by applying mathematical

transformations to one or more of the original features.

Feature Importance: A measurement of the importance of a single feature to the neural

network, relative to the other features.

15

Feature Selection: The process of choosing the most important features to the neural

network.

Feature Vector: The complete set of inputs to a neural network. The feature vector must

be the same size as the input layer.

Feature: A single value from the feature vector of a neural network or other model. The

features in a feature vector organize themselves around the neurons in the input

layer of a neural network.

Feedforward Neural Network: A neural network that contains only forward

connections between the layers.

Gated Recurrent Unit (GRU): A computationally efficient form of Long Short-Term

Memory (LSTM) that combines several gates into one.

Genetic Programming: An evolutionary algorithm that develops programs to optimize

their output for an objective function.

Genome: An individual in an evolutionary program.

Gradient: A partial derivative of the loss function of a neural network with respect to a

single weight. The gradient is a key component in many neural network-training

algorithms.

Hidden Layer: A neural network layer that occurs between the input and output layers.

A neural network can contain zero or more hidden layers.

Input Layer: The first layer of neurons that receives the input to the neural network.

Neural networks have a single input layer that must be the same length as the

input vector to the neural network.

16

Interior Node: A node in a genetic program that is not a terminal node or root node; it

has both parents and children.

Kaggle: A website where individuals compete to achieve the best model for posted data

sets. Kaggle is considered as a source of benchmarking data sets in this research.

KDD Cup: An annual competition, hosted by the Association for Computing Machinery

(ACM) where individuals compete for the best model fit on a provided data set.

Latent Dirichlet Allocation (LDA): A natural language processing generative statistical

model.

Layer: A collection of related neurons in a neural network. A neural network typically

has an input, output, and zero or more hidden layers.

Learning Rate: A numeric constant that controls how quickly a model, such as a neural

network, learns. For backpropagation the learning rate is multiplied by the

gradient to determine the value to change the weight.

Linear Discriminant Analysis (LDA): Generalization of the classification algorithm

originally proposed by Fisher for the iris data set.

Linear Regression: A simple model that computes its output as the weighted sum of the

input plus an intercept value.

Log Loss Error: A common error metric for classification of neural networks.

Long Short-Term Memory (LSTM): A type of recurrent neural network that uses a

series of gates to learn patterns spanning much larger sequences than those that

regular simple recurrent networks are capable of learning.

Loss Function: A function that measures the degree to which the actual input from a

neural network (ŷ) is different than the expected output (y).

17

Momentum: A numeric constant that attempts to prevent a neural network from falling

into a local minimum. This value is multiplied by the previous iteration’s weight

change to determine a value to add to the current iteration’s weight change.

Mutation: An evolutionary operator, inspired by the biological concept of asexual

reproduction, in which a single genome produces offspring with a slightly altered

set of traits than the single parent. Because mutation introduces new stochastic

information, it fulfills the exploration component of an evolutionary algorithm.

Named Feature: A description used in this dissertation for a feature that represents a

specific value, such as a measurement or a characteristic of the data. An image is

a high-dimension input that would contain pixels, as opposed to named features.

Natural Language Processing: Artificial intelligence algorithms that are designed to

understand human language.

Nesterov Momentum: A more advanced form of classic momentum that attempts to

mitigate the effects of over correcting.

Neural Network: A model inspired by the human brain that is composed of an input

layer, zero or more hidden layers, and an output layer.

Objective Function: A function that evaluates a genetic program (genome) and produces

a score. The evolutionary algorithm will try to create genomes that either

maximize or minimize this score. Most evolutionary algorithms can be

configured to either maximize or minimize.

One-Versus-Rest: A technique that allows multiple binary classification models to

perform multiclass classification by training one classification model per class to

classify between that class and the rest of the classes.

18

Output Layer: The final layer of a neural network. This layer produces the output. A

regression neural network will typically have a single output neuron. A binary

classification neural network will also have a single output neuron. A

classification neural network with three or more classes will have an output

neuron for each class.

Preprocessing: An algorithm that prepares data for a neural network or other model.

The feature engineering explored in this paper would function as a part of data

preprocessing for a neural network.

Principal Component Analysis (PCA): A form of dimension reduction that can shrink

the size of an input vector to a smaller encoding with minimal loss of accuracy to

the neural network.

Quadratic Loss Function: A simple neural network loss function that uses the

difference between the expected output and actual output of a neural network.

The quadratic loss function should be the first choice for regression neural

networks; however, the cross entropy loss function should be the choice for

classification neural networks.

Recurrent Neural Network: A neural network that contains backwards connections

from layers to previous layers.

Regression: A neural network or other model that is trained to produce a continuous

value as its output. A regression neural network will use a linear transfer function

on its output and have a single output neuron.

Root Mean Square Error: A neural network loss function that is typically found in

regression problems.

19

Root Node: The node in a tree that is an ancestor of all other nodes. The root node for a

single-node tree is also a terminal node.

Selection: An algorithm that chooses fit genomes for evolutionary operations such as

crossover and mutation.

Sigmoidal: Something that is s-shaped.

Simple Recurrent Network (SRN): A network with only a single recurrent connection

such as an Elman or Jordan network.

Softmax: An algorithm that ensures that all outputs of a neural network sum to 1.0,

thereby allowing the output to be considered as probabilities.

Stochastic Gradient Descent (SGD): A variant of the backpropagation algorithm that

uses a mini-batch that is randomly sampled each training iteration. SCG has

proven itself to be one of the most effective training algorithms, and it is the

neural network training method for the research proposed for this dissertation.

Symbolic Expression (S-Expression): Notation for nested list (tree-structured) data,

invented for the Lisp programming language, which uses it for source code as

well as data.

Synthetic Data set: A data set that was generated to test a specific characteristic of an

algorithm.

Terminal Node: A node in a tree that has no children. Terminal nodes are also referred

to as leaf nodes.

Training Data set: The data on which the model was actually trained. Usually,

validation data are also kept so that the model can be evaluated on different data

than it was trained with.

20

Transfer Function: Applied to the weighted summations performed by the layers of a

neural network. All layers of a neural network have transfer functions except the

input layer. Transfer functions are sometimes referred to as activation functions.

Tree-Based Genetic Program: A genetic program that is represented as a tree of nodes.

The research proposed by this dissertation uses tree-based genetic programs.

Turing Complete: A system of data-manipulation rules that simulates any single-taped

Turing machine. Also referred to as computationally universal.

Universal Approximation Theorem: A theorem that states that a feedforward network

with a single hidden layer containing a finite number of neurons can approximate

continuous functions.

Validation Data set: The portion of the data set that validates model predictions on data

that are outside of the training data set. This data set is sometimes referred to as

out-of-sample data.

Xavier Weight Initialization: A neural network weight initialization algorithm that

produces relatively quick convergence for backpropagation and limited variance

of required iteration counts for repeated training of a neural network.

YAML Ain't [sic] Markup Language (YAML): A common configuration file format

that communicates operating parameters to the algorithm proposed by this

research.

List of Acronyms

ACE: Alternating Condition Expectation

ANN: Artificial Neural Network

CGP: Cartesian Genetic Programming

21

DAG: Directed Acyclic Graph

DBNN: Deep Belief Neural Network

DNN: Deep Neural Network

GP: Genetic Programming

GRU: Gated Recurrent Unit

IDS: Intrusion Detection System

KDD: Knowledge Discovery in Databases

LDA: Latent Dirichlet Allocation or Linear Discriminant Analysis

LSTM: Long Short-Term Memory

NEAT: NeuroEvolution of Augmenting Topologies

ReLU: Rectified Linear Unit

RDBMS: Relational Database Management System

SGD: Stochastic Gradient Descent

SRN: Simple Recurrent Neural Network

SIFT: Scale-Invariant Feature Transform

TD-IDF: Term Frequency–Inverse Document Frequency

T-SNE: t-Distributed Stochastic Neighbor Embedding

XOR: Exclusive Or

YAML: YAML Ain't [sic] Markup Language

Summary

This chapter introduced proposed research into automated feature engineering. This

algorithm will leverage the ability of genetic programming to generate expressions that

might become useful features for neural networks. The features engineered by this

22

algorithm will consist of expressions that utilize one or more features from the data set’s

original feature vector. The resulting engineered features should increase the accuracy of

the neural network for some data sets.

The primary challenge of this research is to limit the infinite search space of

expressions that combine the features of the data set. This goal is accomplished by

defining the types of expressions that most benefit a neural network, determining the

importance of a feature, and prioritizing the expressions to be searched by the algorithm.

It would also be beneficial if the algorithm could run in parallel to utilize multiple cores

on the host computer system.

Additionally, the algorithm needs an efficient objective function to evaluate

candidate-engineered features against each other. Such a function will likely be based on

fitting a neural network model with candidate-engineered features. This objective

function must be designed efficiently so that it can determine in minimal time how

effective one candidate engineered feature is compared to another. Genetic programming

uses this type of objective function to decide the best genomes (candidate-engineered

features) to form the next generation of genomes.

The remainder of this dissertation proposal is organized as follows: Chapter 2

provides a review of the literature that directly influenced this research. Chapter 3

presents the methodology applied in order to implement an algorithm for automated

feature engineering.

23

Chapter 2

Literature Review

The research proposed for this dissertation focuses primarily upon feature

engineering and how to apply it to deep neural networks. Because of its ability to

manipulate expressions, genetic programming will enable the dissertation algorithm to

recommend engineered features. The following areas of literature are important to the

proposed research:

• Feature engineering

• Neural networks

• Deep learning

• Genetic programming

There is considerable research community interest in all of these areas. The

following sections review current literature in these areas as it pertains to the proposed

research:

Feature Engineering

The input vector of a predictive model can be augmented or transformed to enhance

predictive performance. In literature, this process is often referred to as feature

engineering, feature modification, or feature extraction. Automated variants of these

processes are sometimes referred to as automated feature engineering or feature learning.

For consistency, this dissertation will use the terminology of feature engineering to refer

to this augmentation. It will use automated feature engineering to refer to an algorithm

that automates this feature engineering.

24

These techniques grew out of the need to transform model input into forms

conducive for linear regression (Freeman & Tukey, 1950). This transformation can be

helpful to lower residual error on a linear regression. Box and Cox (1964) showed a

method for determining which of several power functions might be a beneficial feature

transformation for linear regression input. The algorithm in their paper became known as

the Box-Cox transformation. Power transformations simply apply exponents to the input

features of a machine learning model. Other mathematical functions may also perform

transformation. Logarithms are a popular choice. Linear regression is not the only

machine learning model that benefits from feature engineering transformations. These

simple transformations modify the individual features independently of each other.

The Box and Cox (1964) relied upon a stochastic sampling of the data and does not

necessarily guarantee an optimal set of transformations. Breiman and Friedman (1985)

introduced the alternating conditional expectation (ACE) algorithm that could ensure

optimal transformations for linear regression. The ACE algorithm finds a set of optimal

transformations for each of the predictor features, as well as the output for linear

regression. Although the resulting transformations were originally intended for linear

regression, they work for other model types as well (B. Cheng & Titterington, 1994).

Splines are a common means of feature transformation for most machine learning

model types. By fitting a spline to individual features, it is possible to smooth the data

and reduce overfitting. The number and position of knots inside the spline is a hyper-

parameter that must be determined for this transformation technique. Splines have the

capability of taking on close approximations of the shape of other functions. Brosse,

25

Lek, and Dauba (1999) used splines to transform data for a neural network to predict the

distribution of fish populations.

Machine vision has been a popular application of feature engineering. A relatively

early form of feature engineering for computer vision was the Scale-Invariant Feature

Transform (SIFT) (Lowe, 1999). This transformation attempts the recognition of images

at multiple scales, which is a common problem in computer vision. A machine learning

model that learns to recognize digits might not perceive these same digits if their size is

doubled. SIFT preprocesses the data and provides them in a form where images at

multiple scales produce features that are similar. These types of features can be

generalized for many problems and applications in machine vision, including object

recognition and panorama stitching (M. Brown & Lowe, 2003).

Text classification is another popular application of machine learning algorithms.

Scott and Matwin (1999) utilized feature engineering to enhance the performance of rules

learning for text classification. These transformations allow structure and frequency of

the text to be generalized to a few features. Representing textual data to a machine

learning model produces a considerable number of dimensions. Text classification

commonly uses feature engineering to reduce these dimensions.

Another application of feature engineering to text classification is the latent dirichlet

allocation (LDA) engineered feature. This method transforms a corpus of documents into

document-topic mappings (Blei et al., 2003). LDA has subsequently been applied to

spam filtering, among several document classification tasks (Bíró, Szabó, & Benczúr,

2008) and article recommendation (C. Wang & Blei, 2011).

26

Many data are stored in relational database management systems (RDBMS) and

consist of a number of different tables that form links, or relations, between them. The

relationships between these tables can be of various cardinalities, leading to relationships

including one-to-one, one-to-many, or many-to-many. Machine learning models

typically require a fixed-length feature vector. Mapping the RDBMS linked data into a

feature vector that is suitable for a machine learning model can be difficult. Automated

mapping of RDBMS data is an active area of research. Bizer, Heath, and Berners-Lee

(2009) created a system where the data are structured in a way that they can be accessed

with semantic queries.

Feature engineering has proven to be valuable in the Kaggle and KDD Cup data

science competitions. In fact, one team utilized feature engineering and an ensemble of

machine learning models to win the KDD Cup 2010 competition (H.-F. Yu et al., 2011).

Histograms of oriented gradients were other features presented in this competition. W.

Cheng et al. (2011) developed an automated feature generation algorithm for data

organized with domain-specific knowledge. These technologies have found many

applications. For example, Ildefons and Sugiyama (2013) were able to win the Kaggle

Algorithmic Trading Challenge with an ensemble of models and feature engineering. The

features engineered for these competitions were created manually or with knowledge

about the specific competition problem. Such knowledge is referred to as domain-

specific knowledge and requires human intuition that cannot currently be replicated by a

machine.

Feature engineering has also advanced natural language processing (NLP). An

example of an engineered feature for NLP is the term frequency inverse document

27

frequency (TF-IDF). This engineered feature is essentially the ratio of the frequency of a

word in a document compared to its occurrence in the corpus of documents (Rajaraman

& Ullman, 2011). TF-IDF has proven popular for text mining, text classification, and

NLP.

Researchers have examined the ability of machine learning algorithms to perform

automated feature learning. These algorithms are often unsupervised in that they examine

the data without regard to an expected outcome. Coates et al. (2011) implemented an

unsupervised single-layer neural network for feature engineering. Principal component

analysis (PCA) (Timmerman, 2003) and t-distributed stochastic neighbor embedding (T-

SNE) (Van der Maaten & Hinton, 2008) are dimension-reduction algorithms that have

also proven to be successful for automated feature engineering. Other unsupervised

machine learning algorithms have also been applied to feature engineering. Coates and

Ng (2012) utilized k-means clustering for feature engineering.

Deep neural networks have many different layers to learn complex interactions in the

data. Despite this advanced learning capability, deep learning also benefits from feature

engineering. Bengio (2013) demonstrated that feature engineering is useful for speech

recognition, computer vision, classification, and signal processing. Le (2013) engineered

high-level features using unsupervised techniques to construct a deep neural network for

signal processing.

Lloyd, Duvenaud, Grosse, Tenenbaum, and Ghahramani (2014) employed feature

engineering to create the Automatic Statistician project. This system spontaneously

models regression problems and produces readable reports. This system can determine

the types of transformations that might benefit individual features.

28

Kanter and Veeramachaneni (2015) invented a technique called deep feature

synthesis that automatically transforms relational database tables into the feature vector

needed by the typical machine learning model. The feature vector input to a neural

network cannot directly encode the one-to-many and many-to-many relationships that are

common in RDBMSs. The deep feature synthesis algorithm employs SQL-like

transformations, such as MIN, MAX, and COUNT to summarize and encode these

relationships relationships into a feature vector. The authors of deep feature synthesis

reported on their algorithm’s ability to outperform some competitors in three data science

competitions.

Researchers have implemented automated feature engineering for specific domains.

Davis and Foo (2016) applied automated feature detection to modeling tasks involving

HTTP traffic and tunnels. Cuayáhuitl (2016) created SimpleDS, a system for text

document processing that avoids manual feature engineering by using a deep

reinforcement learning system. Manual feature engineering remains popular, and

researchers have explored its value in various contexts. Bahnsen, Aouada, Stojanovic,

and Ottersten (2016) provide guidelines and examples of feature engineering for credit

card fraud detection. This is an example of domain-specific knowledge. Zhang, Huan,

and Jiang (2016) investigated feature engineering for phishing detection. Although these

systems are effective in their specific domains, they do not address the problem statement

proposed by this research of creating a generic automated feature engineering system.

Neural Networks

Neural networks are a biologically-inspired class of algorithms that McCulloch and

Pitts (1943) introduced as networks composed of MP-Units. Although neural networks

29

contain connections and neurons, they do not attempt to emulate every aspect of real

world neurons. Modern neural networks are more of a mathematical model than a

biological simulator. The seminal neural network algorithm of McCulloch and Pitts

specifies the calculation of a single neuron, called an MP-Unit, as the weighted sum of

the neuron’s inputs. This weighted sum is a mathematical dot product. Nearly all neural

networks created since their introduction in 1943 are based upon feeding dot product

calculations to transfer functions over layers of neurons. Deep neural networks simply

have more layers of neurons (MP-Units).

Initially, the weights of neural networks were handcrafted to create networks capable

of solving simple problems. The research community has shown great interest in

automating neural network weight selection to achieve a particular objective. Hebb

(1949) defined a process to describe how the connection strengths between biological

neurons change as learning occurs. When the organism performs actions, connections

increase between the neurons necessary for that action. This process became Hebb’s

rule, and it is often informally stated as, “neurons that fire together wire together.”

Rosenblatt (1962) introduced the perceptron that became the seminal neural network

that contained input and output layers. The perceptron is a two-layer neural network with

an input layer that contains weighted forward-only connections to an output layer. The

transfer function defined for the classic perceptron is a simple function that performs a

threshold—it returns the value 1 if the neuron’s weighted inputs reach a value above a

specified threshold; otherwise, it returns the value 0. Minsky and Papert (1969) described

severe limitations in the perceptron in their monograph. They demonstrated that

30

perceptrons were incapable of learning the Exclusive Or (XOR) operator, a non-linearly

separable problem.

Research continued for the automatic derivation of the weights of a neural network,

beginning with the work of Werbos (1974) when he mentioned that gradient descent

could be used for the training of neural networks in his Ph.D. thesis. Previously,

researchers used gradient descent to find minimums of functions. Rumelhart, Hinton,

and Williams (1985) were the first to apply gradient descent to neural network training.

Their algorithm is called the backward propagation of errors, or backpropagation. The

gradient of each weight is calculated and determines a change that should occur in the

weight for the current training iteration. The gradient of each weight is the partial

derivative of the loss function for that weight with all other weights held constant.

Therefore, backpropagation applies gradient descent to neural network training.

Backpropagation was initially ineffective at training neural networks with

significantly more than two hidden layers (Bengio, 2009). Furthermore, it was not

known if neural networks actually benefited from many layers. Gybenko (1989)

formulated the universal approximation theorem and proved that a single hidden-layer

neural network could approximate any function. Hornik (1991) continued this research by

showing that the multilayer feedforward architecture – and not the specific choice of the

transfer function – gave neural networks the potential of being universal approximators.

The universal approximation theorem implies that additional hidden layers are

unnecessary because a single hidden-layer neural network can theoretically learn any

problem. Although feedforward neural networks are universal approximators, they are

not Turing complete (Graves, Wayne, & Danihelka, 2014; Turing, 1936) without

31

extension. In other words, a feedforward neural network can emulate any function, but

the neural network cannot replicate the operation of any computer program.

Just as for other statistical models, it is often necessary to explain why a neural

network produced the output that it did. Garson (1991) created an algorithm that could

rank the importance of the input neurons in order to reveal the behavior of neural

networks. Goh (1995) proposed a similar feature-ranking algorithm that analyzed the

weights of a neural network. In fact, many models have feature-ranking algorithms that

analyze that individual model. These ranking algorithms are called model dependent

because they work only for a single type of model.

Breiman (2001) introduced permutation feature importance in his seminal paper on

random forests. Although he presented this algorithm in conjunction with random

forests, it is model-independent and appropriate for any supervised learning model.

Consequently, permutation feature importance and neural network weight analysis will

play a role in this dissertation. The ranking of features that the proposed research will

yield can become a score that functions as the genetic programming objective function.

By definition, a feedforward neural network contains only forward connections.

Thus, the input layer connects only to the first hidden layer, the first hidden layer

connects only to the second hidden layer, and the final hidden layer connects only to the

output layer. However, recurrent neural networks allow connections to previous layers.

Elman (1990) and Jordan (1997) began the research of recurrent neural networks and

introduced their simple recurrent networks (SRNs) as the Elman and Jordan neural

networks. Figure 3 shows an Elman neural network while Figure 4 shows a Jordan neural

network.

32

Figure 3. Elman neural network

Figure 4. Jordan neural network

33

Both the Elman and Jordan networks contain a context layer (C) that will initially

output 0. However, the context layer always remembers the input from the previous time

that the network was calculated. Subsequent calculations of the neural network will

cause the context layer to always output the input received by the layer in the previous

iteration. The data received are stored and then output at the next calculation of the neural

network. The context layer in a SRN can function somewhat like a time-loop in that the

output is always the input from the previous iteration.

A technique known as backpropagation through time can usually train recurrent

neural networks (Mozer, 1989; Robinson & Fallside, 1987; Werbos, 1988). This

technique is similar to backpropagation except that it unfolds the recurrent layers to make

the recurrent neural network appear as one large feedforward network. Backpropagation

through time has a configuration parameter that specifies the number of time slices that

the program can unfold into the network. A number of virtual layers equal to that

configuration parameter can create the virtual network. The same backpropagation

algorithm that was used for feedforward networks trains the virtual network.

Feedforward neural networks will always produce the same output for a given

feature vector. However, recurrent neural networks will maintain state from previous

computations. This state will affect the neural network output; therefore, the order that

feature vectors are presented to the neural network will affect the output. This capability

makes recurrent neural networks applicable to time series prediction. For recurrent

neural networks, a series of events, represented as individual feature vectors, now

produces an output. This result differs from a single feature vector in regular feedforward

neural networks. While recurrent neural networks are particularly adept at handling time-

34

series, there are other alternatives, Balkin and Ord (2000) demonstrated encoding

methods to use regular non-recurrent feedforward neural networks with time series

prediction.

One issue with SRN networks, such as Elman and Jordan, is that the longer a time

series becomes, the less relevant a context layer. To overcome this problem, Hochreiter

and Schmidhuber (1997) introduced the long short-term memory (LSTM) network,

which is shown in Figure 5.

Figure 5. Long short-term memory (LSTM)

It is important to note that this figure shows only a single neuron of a LSTM

network. These LSTM neurons can be placed inside of regular feedforward neural

networks. Usually, LSTM neurons are placed as an entire layer of such neurons. On a

conceptual level, the LSTM neuron functions similarly to the context neurons of the

SRNs. The C-labeled node, near the center of the figure, represents the context memory

35

of the node. However, unlike SRN’s, the LSTM does not simply copy the previous

neural network’s computation to its internal state. The LSTM uses three gates to control

when the input is accepted, when the internal state is forgotten, and when the internal

state is output. These gates are activated when the input reaches a threshold specified by

a trained internal weight. The backpropagation through time algorithm trains the gate

threshold weights along with every other weight. Because it controls the internal state,

input, and output, the LSTM is considerably more effective at recalling time series than a

regular SRN.

The inability to learn large numbers of hidden layers was not the only barrier to

widespread neural network adoption. One problem that remains for neural networks is

the large number of hyper-parameters that a neural network contains. A neural network

practitioner must decide the number of layers for the network as well as the quantity of

neurons that each of the hidden layers will contain. Prior research in the field of neural

networks reveals that researchers have long aspired to create an algorithm that

automatically determines the optimal structure for neural networks. Stanley and

Miikkulainen (2002) invented the NeuroEvolution of Augmenting Topologies (NEAT)

neural network that utilizes a genetic algorithm to optimize the neural network structure.

The genetic algorithm searches for the best neural network structure and weight values to

minimize the loss function.

Although most neural network research has shifted towards deep learning, some

research remains on classical neural network structures. Chea, Grenouillet, and Lek

(2016) used a self-organizing map (SOM) to predict water quality. A SOM allowed M.

Wang et al. (2016) to identify the mixtures of Chinese herbal medicines. Sobkowicz

36

(2016) implemented a NEAT neural network to perform sentiment analysis in the Polish

language.

Deep Learning

While it is theoretically possible for a single-hidden layer neural network to learn

any problem (Hornik, 1991), this outcome will not necessarily occur in practice.

Additional hidden layers can allow the neural networks to learn hierarchies of features,

thereby simplifying the search space. They can also find the optimal set of weights with

less training. Unfortunately, no method to train these networks existed until the

development of a series of innovations that introduced new transfer functions and training

methods. McCulloch and Pitts (1943) introduced the seminal neural network calculation,

shown in Equation 1. Many new technologies have built upon this core calculation.

Hinton et al. (2006) first implemented a deep neural network with favorable results.

They created a learning algorithm that could train deep network variants like those that

Fukushima (1980) introduced for belief networks. This discovery renewed interest in

deep neural networks. Several additional technologies, such as stochastic gradient

descent (SGD) (Bertsekas, 1999), rectified linear units (ReLU) (Glorot, Bordes, &

Bengio, 2011), and Nesterov momentum (Sutskever, Martens, Dahl, & Hinton, 2013),

have made training of deep neural networks more efficient. Taken together, these

technologies are referred to as deep learning.

Neural networks with many layers will often experience a problem in which the

gradients become 0 with certain transfer functions. Hochreiter (1991) was the first to

describe this vanishing gradient problem in his Ph.D. thesis. Prior to deep learning, most

neural networks used a simple quadratic error function on the output layer (Bishop,

37

1995). De Boer, Kroese, Mannor, and Rubinstein (2005) introduced the cross entropy

error function, and it often achieves better results than the simple quadratic because it

addresses the vanishing gradient problem by allowing errors to change weights even

when neuron’s gradient saturates (their derivatives are close to 0). It also provides a

more granular means of error representation than the quadratic error function for

classification neural networks. Therefore, the research presented in this dissertation will

utilize the cross entropy error function for classification and root mean square error

(RMSE) for regression.

Neural networks must start with random weights (Bengio, 2009). These random

weights are frequently sampled within a specific range, such as (-1,1). However, this

simple range initialization can occasionally produce a set of weights that are difficult for

backpropagation to train. As a result, researchers have shown interest for weight

initialization algorithms that provide a good set of starting weights for backpropagation

(Nguyen & Widrow, 1990). Glorot and Bengio (2010) introduced what has become one

of the most popular methods called the Xavier weight initialization algorithm. Because of

its ability to produce consistently performing weights suitable for backpropagation

training, the research in this dissertation will use the Xavier weight initialization

algorithm.

Backpropagation relies on the derivatives of the transfer functions to incrementally

calculate, or propagate, error corrections from the output neurons back through the

weights of a neural network. Prior to 2011, most neural network hidden layers used the

hyperbolic tangent or the logistic transfer function, which are sigmoidal transfer

functions. The derivative of both of these functions saturate to 0 as x approaches either

38

positive or negative infinity, causing these transfer functions to exhibit the vanishing

gradient problem. Glorot et al. (2011) introduced the rectified linear unit (ReLU) transfer

function to address this problem.

The ReLU transfer function usually achieves better training results for deep neural

networks than the sigmoidal transfer functions. According to current research (Bastien et

al., 2012), the type of transfer function to use for deep neural networks is well defined for

each layer type. For their hidden layers, deep neural networks employ the ReLU transfer

function. For their output layer, most deep neural networks utilize a linear transfer

function for regression, and a softmax transfer function for classification. No transfer

function is needed for the input layer. Bastien et al. (2012) present research that follows

this form and uses the ReLU transfer function for hidden layers and either linear or

softmax for the output layer. Table 1 summarizes the logistic, hyperbolic tangent, ReLU,

linear, and softmax transfer functions:

Table 1. Common neural network transfer functions

Name/

Range

Expression

(Forward)

Derivative

(Backward)

Graph

(Derivatives in Red)

Logistic/

Sigmoid

[0,1]

ϕ(𝑥) =
1

1 + 𝑒−𝑥
 ϕ'(𝑥) =

𝑒𝑥

(1 + 𝑒𝑥)2

HTan

[-1,1]
ϕ(𝑥) = htan(𝑥) ϕ'(𝑥) = 1 − 𝜙2(𝑥)

ReLU

[0,+∞)
ϕ(𝑥) = max (0, 𝑥) ϕ'(𝑥) = {

𝑥 > 0 1
𝑥 ≤ 0 0

39

Linear

(-∞,+∞)
ϕ(𝑥) = 𝑥 ϕ'(𝑥) = 1

Softmax

(-∞,+∞) 𝜙(𝑥)𝑗 =
𝑒𝑥𝑗

∑ 𝑒𝑥𝑘
‖𝑥‖
𝑘=1

NA

NA

This table indicates why ReLU often achieves better performance than a logistic or

hyperbolic tangent. The graph column of the table shows both the transfer function as

well as the derivative of that transfer function. The solid black line refers to the transfer

function output, and the dotted red line is the derivative. Both sigmoid-shaped transfer

functions have derivatives that quickly saturate to 0 as it approaches either positive or

negative infinity. The ReLU, on the other hand, does not saturate as positive infinity is

approached. Additionally, the much wider range of the ReLU lessens the need for the

common practice of normalizing the inputs to values closer to the range of the sigmoidal

transfer function in use.

Overfitting is a frequent problem for neural networks (Masters, 1993). A neural

network is said to be overfit when it has been trained to the point that the network begins

to learn the outliers in the data set. This neural network is learning to memorize, not

generalize (Russell & Norvig, 1995). A class of algorithms designed to combat

overfitting is called regularization algorithms. One of the most common forms of neural

network regularization is to simply add a scaled summation of the weights of the neural

network to the loss function. This calculation will cause the training algorithm to attempt

to lower the weights of the neural network along with the output error. Two of the most

common forms of this weight regularization are L1 and L2 (Ng, 2004).

40

L1 regularization, shown in the following equation, sums the weights of the neural

network (w) and produces an error value (E) that is added to the loss function of the

neural network.

𝑬𝟏 =
𝝀𝟏

𝒏
∑|𝒘|

𝒘

 (4)

It is important to note that the w vector includes only actual weights and not bias-

weights. The value λ is a scaling factor for the effect of the L1 regularization. If λ is too

high, the objective of lowering the weights will overwhelm the one for achieving a lower

error for the neural network training. This situation causes a failure of the neural network

to converge to a low error. The value n represents the number of training set elements.

L2 regularization is defined similarly to L1 and is provided by the following equation:

𝑬𝟐 = 𝝀𝟐 ∑ 𝒘𝟐

𝒘

(5)

Both L1 and L2 regularization sum the weights without regard to their sign. This

magnitude-oriented approach is accomplished by an absolute value for L1 and a square

for L2. The weights are pushed towards 0 in both cases. However, L1 has a greater

likelihood of pushing the weights entirely to 0 and effectively pruning the weighted

connection (Ng, 2004). This pruning feature of L1 is especially interesting for the

research proposed by this dissertation because it can function as a type of feature

selection. L1 will indicate worthless engineered features by pruning them.

L1 and L2 are not the only forms of regularization. Srivastava, Hinton, Krizhevsky,

Sutskever, and Salakhutdinov (2014) introduced dropout as a simple regularization

41

technique for deep neural networks. Dropout is typically implemented as a single

dropout layer, as demonstrated by Figure 6.

Figure 6. Dropout layer in a neural network

The dashed lines in Figure 6 represent the dropped neurons. In each training

iteration, some neurons are removed from the dropout layer. However, neither the bias

neurons nor the input and output neurons are ever removed. When a neuron is discarded,

the training iteration occurs as if that neuron and all of its connections are not present.

However, the drop is only temporary; the neuron and its connections will return in the

next iteration, and a different set is removed. In this way, dropout decreases overfitting

by preventing the network from becoming too dependent on any set of neurons. Once

42

training is complete, all the neurons return. Dropout affects only neural networks during

training.

Another significant innovation that benefits deep learning is Nesterov momentum

(Sutskever et al., 2013). Momentum has been an important component of

backpropagation training for some time. Polyak (1964) introduced the seminal

momentum algorithm that is a regularization technique for gradient ascent/descent.

Momentum backpropagation adds a portion of the previous iteration’s weight change to

the current iteration’s weight change. Consequently, the weight updates have the

necessary momentum to continue through local minima and to continue the descent to

improve the loss function. Nesterov momentum (Nesterov, 1983) further enhances the

momentum calculation and increases the effectiveness of SGD because SGD selects

randomly sampled mini-batches from the data set for each iteration. Nesterov momentum

decreases the likelihood of a particularly bad mini-batch from changing the weights into

an irreparable state. Because of its demonstrated performance for deep neural networks,

this dissertation will apply SGD to the neural network training.

Researchers have also utilized deep learning for recurrent neural networks. The

research community has recently shown considerable interest in deep LSTM networks.

Kalchbrenner, Danihelka, and Graves (2015) use a grid of LSTM units to achieve greater

accuracy. Chung, Gulcehre, Cho, and Bengio (2015) introduced the gated recurrent

network (GRU) and added an output gate, which allows greater accuracy as the time

series increases in length. Unlike feedforward neural networks, LSTM and GRU are

recurrent networks that can function as Turing machines (Graves et al., 2014).

43

Evolutionary Programming

Holland (1975) introduced evolutionary algorithms. Later, Deb (2001) extended this

work to present genetic algorithms as they are known today. The genetic algorithm is a

generic population-based metaheuristic technique to find solutions to many real-world

search and optimization problems. Darwinian evolution inspired these algorithms. A

population of potential solutions is evolved as the fittest population members produce

subsequent generations through the genetic operators of crossover and mutation. Each of

these potential solutions is referred to as either a genome or a chromosome (depending on

the implementation). This evolutionary process is a search for the classic balance

between exploitation and exploration. Mutation and crossover provide the genetic

algorithm with the ability to explore and exploit the search space. Exploration occurs

when the mutation genetic operator introduces randomness to the population. The

crossover genetic operator exploits by creating new members containing traits from the

best members of the population (Holland, 1975).

The genetic algorithm represents potential solutions as fixed-length vectors. This

vector might be the weights of a neural network, coefficients of an expression, or any

other fixed-length vector that must be optimized against an objective function. Mutation

occurs by randomly perturbing the elements of a vector. Crossover is achieved by

splicing together the vectors of two or more parent vectors.

An objective function serves to evaluate the population. The loss function of a

neural network is somewhat similar to the evolutionary algorithm’s objective function.

Both the loss function and objective function provide a numeric value to be optimized.

Some evolutionary algorithms also allow the objective function to be maximized. The

44

choice between minimization and maximization depends on the domain of the problem.

Although the loss function and objective function both accomplish similar goals, it is

standard procedure to refer to the evaluation function for an evolutionary algorithm as an

objective function.

While many problems can be modeled as a fixed-length vector, this representation is

a limiting factor for classic genetic algorithms. They will never improve the underlying

neural network algorithm even though they evolve the weights to produce better results.

To evolve better algorithms, the computer programs themselves must become the

genomes that will be evolved (Poli, Langdon, & McPhee, 2008). Genetic programming

is an answer to the fixed-length issue of genetic algorithms.

Rather than evolving a fixed-length vector, genetic programming evolves

representations of actual computer programs to achieve an optimal score to an objective

function. Koza (1992) popularized this active area of research in order to automatically

generate programs to solve specific problems. The majority of Koza’s research

represents the genetic programs as trees. Although most genetic programming research

focused on tree representation (White et al., 2013), there are other representations of the

genetic programs, such as grids and probabilistic structures (Wolfgang Banzhaf,

Francone, Keller, & Nordin, 1998). This dissertation research will use only the tree

representation of genetic programs.

A tree-based genetic program is implemented as a directed acyclic graph (DAG).

The tree is composed of connected nodes. The tree starts with a parentless root node. It

connects to other nodes and points to still more nodes. Interior nodes with at least one

child form the tree. Terminal nodes without children also exist. Ultimately, the tree

45

reaches all of the terminal nodes, which represents the variables and constants. In turn,

the operators using the variables and constants are composed of the interior nodes. The

following expression could be represented as a tree for genetic programming:

𝒙

𝟐
− 𝟏 + 𝟑𝐜𝐨𝐬 (𝒚) (6)

It is common in computer science to represent these expressions as trees. Lisp and

Scheme are early programming languages that utilized similar tree representations called

S-Expressions (Sussman, Abelson, & Sussman, 1983). Figure 7 shows the expression

mentioned above as a tree:

Figure 7. Expression tree for genetic programming

It is also possible to express entire computer programs as trees. The branching

nature of a tree can encode if-statements and loops. The programs encoded into these

types of trees can be Turing complete (Teller, 1994), which means they can theoretically

compute anything (Turing, 1936). Additionally, nodes can be created to change the

values of variables. However, trees are not the only representation for genetic programs.

46

Much of the research into genetic programming has involved the best way to represent

the genetic programs (Poli et al., 2008).

All evolutionary algorithms must have processes for exploitation and exploration.

For genetic programming, crossover and mutation can accomplish these functions. The

representation of the underlying data dictates the exact nature of the mutation and

crossover algorithms. Koza (1992) defined several possible algorithms for crossover and

mutation of genetic programming trees. The two most popular are point crossover and

subtree mutation. This dissertation includes point crossover and subtree mutation for its

genetic programming solution. Figure 8 shows point crossover:

47

Figure 8. Point crossover

To implement point crossover, two parents are chosen. The algorithm chooses a

random target node for parent 1 and a random source node for parent 2. Then it creates

the offspring by cloning parent 1 and replacing the target node on the offspring with a

copy of the subtree at the source node on parent 2. The crossover operation does not

modify either parent, and the offspring may be more fit than the parents. Most

importantly, crossover does not introduce new information; it only recombines existing

information. As a result, crossover exploits rather than explores.

Koza also defined subtree mutation, as shown in Figure 9:

Figure 9. Subtree mutation

48

Mutation uses only a single parent, and, like crossover, the operation does not

modify the parent. The algorithm chooses a random insertion node on the parent and

generates a new random branch. Cloning the single parent and grafting the randomly

generated branch onto the offspring at the previously chosen random insertion node

creates the offspring. It is important to note that the mutation operator does add new

information to the genome and, therefore, explores rather than exploits.

Speciation

It can be difficult to produce viable offspring from a crossover operation between

two dissimilar genomes. This fact is true in real life as well. Two animals are considered

to be from the same species if they are capable of producing offspring (Dawkins, 1976).

In genetic programming, if the two parent genomes are similar, the probability increases

for the crossover operator to produce offspring superior to the parents (Poli et al., 2008).

Although there are several speciation strategies, this dissertation uses the strategy

included with the Encog framework that is similar to the speciation algorithm of Stanley

and Miikkulainen (2002) for the NEAT neural network. In that particular algorithm, the

larger of the two parent trees is chosen, and the percentage of the same nodes of the

larger tree that are also in the smaller tree is calculated. Genomes that have a percent

similarity above a configurable threshold are considered to be in the same species. The

species divisions are recalculated at the end of the training iterations. As a result, a child

is not necessarily in the same species as the parents.

Other Genetic Program Representations

Trees are not the only means of representing genetic programs. Modern computers

portray computer programs as a series of linear instructions (Knuth, 1997), not as trees.

49

Although these programs can be written as trees, it is often not practical because the

linear nature of programming will create tall, unbalanced trees. This problem led a

number of researchers to investigate a linear representation of the genetic programs. Poli

et al. (2008), Wolfgang Banzhaf (1993), Perkis (1994), and Diplock (1998) sought to

implement genetic programing in a fashion that mirrored the linear computer architecture.

P. Nordin (1994), Peter Nordin, Banzhaf, and Francone (1999), Crepeau (1995), and

Julian F Miller and Thomson (2000) went even further and evolved bit patterns that

represented the actual CPU machine language instruction codes. The linear genetic

programming systems create code that closely resembles pseudocode. As a result, a

human programmer can more easily interpret linear genetic programs than a tree-based

genetic program.

Cartesian Genetic Programming (CGP) represents the evolvable genetic programs as

two-dimensional grids of nodes (Julian Francis Miller & Harding, 2008). CGP easily

encodes computer programs, electronic circuits, neural networks, mathematical

expressions, and other computational structures. Fixed-length vectors serve as integer-

based grids for the crossover and mutation genetic operators.

Many genetic programs operate exclusively on floating point data. While some

research into genetic programming have introduced Booleans, strings and other types,

often only a single type is used. Such types are important; as traditional computer

programs frequently use many different data types. If genetic programming is to evolve

actual computer programs, it is important to offer this same multi-type flexibility.

Unfortunately, data types such as integer, string, and structure complicate genetic

programming because not every operator can accept all types. For example, the “-”

50

operator can easily be applied to integers and floating-point numbers, but it is undefined

for strings or Booleans. To overcome this limitation, Worm and Chiu (2013) created a

system of grammar rules that document dependencies between operators and data. For

example, “-” works with numbers but not strings. These rules restrict the crossover and

mutation operators and ensure that new programs are valid.

Genetic Programming for Automated Feature Engineering

Examples of the application of genetic programming to feature engineering exist in

literature. Although this research is similar to the proposed dissertation, the method in

this dissertation is unique. Specifically, this dissertation leverages unique characteristics

of deep neural networks to constrain the infinite search space of potential engineered

features. Additionally, the proposed algorithm introduces a novel objective function for

genome selection and evaluates many potential engineered feature genomes

simultaneously.

Guo et al. (2005) demonstrated that feature engineering could take advantage of

genetic programming within the domain of fault classification. These researchers

employed the Fisher criterion as the fitness function for the genetic program. This

criterion is typically used in conjunction with Linear Discriminant Analysis (LDA)

(Fisher, 1936). The criterion also measures the inter-class scatter between two classes in a

classification problem. The work of Guo et al. experimented with expressions of original

features in order to linearly separate pairs of classification outcomes in the training set.

This approach differs from the proposed research because it does not attempt to exclude

engineered features that the neural network can easily synthesize on its own. In other

words, the research of Guo et al. is not specifically tailored to deep neural networks. Guo

51

et al. evaluated the results of feature engineering using a shallow 14-neuron network and

a support vector machine.

Another application of genetic programming to feature engineering was the Ph.D.

dissertation of Neshatian (2010). This dissertation introduced a genetic programming-

based feature engineering algorithm and identified that objective functions that utilize an

underlying predictive algorithm are computationally expensive. Rather than directly

target one specific predictive model, the Neshatian algorithm uses a decision stump,

which is essentially a single node on a decision tree. This single stump learns a threshold

value that separates two classes with minimal overlap. In this way, the approaches of

both Guo et al. (2005) and Neshatian (2010) are similar. To see the combined approach,

consider a linear separation between two iris species in the classic Iris data set (Fisher,

1936), shown in Figure 10.

Figure 10. Feature engineering to linearly separate two classes

As can be seen, the genetic programming algorithm is seeking an engineered feature

expression that isolates two of the classes (in this case iris species Setosa and the other

two species). The commonly used iris data set contains the species and four

measurements of 150 iris flowers of three species. The engineered feature becomes what

is commonly referred to as a one-versus-rest model to distinguish one classification from

52

the rest. Both Neshatian (2010) and Guo et al. (2005) demonstrated this model to benefit

feature engineering for decision trees and shallow neural networks. However, Neshatian

(2010) noted the inability of the algorithm to engineer features that enhanced neural

network prediction, attributing this failing to the fact that neural networks synthesize

comparable engineered features on their own. However, deep neural networks do benefit

from feature engineering (Bengio, 2013; Blei et al., 2003; M. Brown & Lowe, 2003;

Coates et al., 2011; Coates & Ng, 2012). Prior research also empirically demonstrated

the benefits of feature engineering to deep neural networks (Heaton, 2016). As a result,

the main purpose of this dissertation is to find these engineered features that increase the

accuracy of deep neural networks.

Summary

Genetic programming and deep neural networks both accomplish similar tasks.

They accept an input vector and produce either a numeric or categorical output.

However, internally, each function differently. Deep learning adjusts large matrices of

weights to produce the desired output. Genetic programming constructs computer

programs to yield the desired output. A genetic program is considered Turing complete;

however, a feedforward neural network is not generally Turing complete.

Feature engineering is a technique that preprocesses the data set to transform it into a

new data set designed to better fit a model and to achieve better accuracy. Typically,

feature engineering is a manual process. However, research interest in automating

aspects of feature engineering exists. Because genetic programming is capable of

evolving programs and expressions from its input features, it is logical to make it the

53

basis for a feature engineering algorithm. Creating this algorithm is the goal of this

dissertation. The exact methodology to build it will be discussed in the next chapter.

54

Chapter 3

Methodology

Introduction

The proposed research strives to build an algorithm capable of the automated

creation of engineered features that increase the accuracy of a deep neural network.

Unlike previous research that dealt with feature engineering, the proposed algorithm will

allow its engineered features to draw upon multiple original values. It can also be

considered as a theoretical infinite search over all combinations of the original feature set.

The algorithm will return only combinations that enhance the learning of the deep neural

network.

Instead of an infinite search, the proposed algorithm will perform a metaheuristic

search. Because the search space is potential expressions, genetic programming is a

natural choice of a metaheuristic. Other metaheuristic search algorithms, such as

simulated annealing, Nelder-Mead (Nelder & Mead, 1965), particle swarm optimization

(PSO) (Kennedy, 2010), or ant colony optimization (ACO) (Colorni, Dorigo, &

Maniezzo, 1991), might be able to be used in connection with genetic programming to

narrow the search space. However, the primary direction for this proposed research will

be genetic programming.

Algorithm Contract and Specification

This research targets the type of deep neural network that is composed of the

following standard components:

• Layered Feedforward Neural Network (Rumelhart et al., 1985)

55

• ReLU or Sigmoid Transfer Function for Hidden Layers (Glorot et al., 2011)

• Xavier Weight Initialization (Glorot & Bengio, 2010)

• Stochastic Gradient Descent (Bottou, 2012)

These algorithms will not be modified to achieve the goal of this research. The

feature engineering algorithm produced by this research should enhance accuracy for a

standard deep neural network, as configured above, that is supported by any common

deep learning framework, such as Theano (Bastien et al., 2012; Bergstra et al., 2010),

CNTK (D. Yu et al., 2014), TensorFlow (Abadi et al., 2016) or Encog (Heaton, 2015).

However, the algorithm would not have wide application if its engineered features could

only increase accuracy of non-standard implementations of deep learning.

The proposed algorithm accepts an operating specification encoded as a YAML file,

which the following example shows:

input_dataset: input.csv

input_x: ['acceleration', 'horsepower', 'cylinders'

input_y: ['mpg']

input_headers: true

output_features: features.csv

output_augmented_dataset: augmented_input.csv

prediction_type: regression

transfer_hidden: relu

...other configuration settings...

The above file specifies the configuration to analyze the standard UCI AutoMPG

data set. The features acceleration, horsepower and cylinders allow the model to make a

prediction. In this case, the prediction is mpg. The features and prediction are all column

names in the original file.

The following definitions are for the individual configuration items:

56

• input_data set: The name of the data set that contains the predictors (x) and

expected outcomes (y). The algorithm will use only the specified columns,

except the target column(s) as the input.

• input_x: The list of column names to use as predictors (x). The names can

be either symbolic or the zero-based index of the column.

• input_y: The list of column names to use as the target(s) (y). The names can

be either symbolic or the zero-based index of the column.

• input_headers: Boolean to indicate if the input CSV has headers. If there

are no headers, the columns must be referenced by their zero-based index.

• output_features: A CSV file that will contain a summary of the engineered

features.

• output_augmented_dataset: The output CSV file that contains the input

CSV file data, along with the new engineered features.

• prediction_type: The type of prediction and will be either classification or

regression.

• transfer_hidden: The type of hidden transfer function to target. It should be

either relu, sigmoid or htan.

As the algorithm develops, it will add more configuration items. The algorithm’s

input file is the same input file that would train a neural network. The output file will

have appended engineered feature columns. This output file could train a neural network.

All common neural network frameworks can train from files of this format. The goal of

this research is to show that a neural network trained from the algorithm’s augmented

57

input will produce a neural network that will allow a more accurate neural network for

some data sets. Figure 11 summarizes this high level design:

Figure 11. Algorithm high level design and contract

Algorithm Design Scope

The proposed algorithm will utilize the genetic programming components of Encog,

which implement a genetic programming framework according to Koza (1992). The

software developed to achieve the research proposed will center primarily on the

following aspects of genetic programming:

58

• Constraints to narrow the search domain

• Objective function to effectively evaluate candidate features

• Post processing analysis of genetic population

The following sections highlight the approach for each of these components:

Narrowing the Search Domain

Placing search constraints upon a genetic programming algorithm is possible (Gruau,

1996; Janikow, 1996). These limits are sometimes implemented as an additional

objective, producing a multi-objective genetic program. The primary objective for a

genetic programming algorithm is to achieve a favorable score from the deep learning

loss function. In prior research, it was determined that certain classes of transformations,

such as simple power functions, ratios, differences and counts do not benefit deep neural

networks (Heaton, 2016). Therefore, a second objective for a genetic algorithm is to

avoid evaluating these transformations. This dissertation will expand on this previous

work that determines undesirable expressions so that the proposed algorithm can focus on

the most beneficial structures for deep learning.

Genetic programming requires a palette of operators from which to construct

expressions. The selection of these operators is critical to a good solution. For example,

some problems may benefit by adding the trigonometry functions. However, the

trigonometry functions might be unnecessary for other problems. Sometimes problem

specific functions are added to the operator set for genetic programming. For the

purposes of this research, the operator palette will be small; however, some functions that

are specific to feature engineering will be added. The following palette of operators are

planned:

59

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Mean of Column/Feature

• Standard Deviation of Column/Feature

• t-SNE Distance to Centroid of Each Class

The final operator described above uses the dimensional reduction algorithm t-SNE

(Van der Maaten & Hinton, 2008) to cut the dimensions of the feature vector to 3. It also

calculates the distance between the feature vector for the current data set item and the

centroid of each class in a classification problem. If the data set is for regression, then

the t-SNE operator will not be available. Other operators not included above may be

added as this research is conducted.

Neural networks are calculated by applying a weighted sum to each neuron, as

demonstrated by Equation 1. Examining the equation reveals that neural networks

inherently have the ability to multiply and sum. As a result, neural networks do not tend

to benefit as much from engineered features involving simple multiplication and addition

(Heaton, 2016). Therefore, it might not be worth the time to discover an engineered

feature as complex as the following equation:

𝒇𝒆 =
𝟑𝒇𝟏𝒇𝟐

𝟐𝒇𝟑
 (7)

In the above equation, an engineered feature (fe) was calculated using three of the

original features. Because neural networks can perform their own multiplication, it might

be possible to simplify to the following equation:

60

𝒇𝒆 =
𝒇𝟏𝒇𝟐

𝒇𝟑
 (8)

The previous two equations are not mathematically equivalent; however, the second

equation might be sufficient because the neural network would have the ability to

multiply 3/2 by the engineered feature. Since the proposed research is targeted at deep

learning, engineering parts of the feature that the neural network can easily learn during

training should be avoided.

Creating an Efficient Objective Function

An objective function is needed to guide the genetic selection operator because the

research utilizes a genetic programming algorithm. The experiments will use a multi-

objective function (Deb, 2001) that will balance between finding effective engineered

features and avoiding engineered features that are known to be ineffective for deep neural

networks.

The first objective is to evaluate the value of engineered features. To accomplish

this task, a control neural network will first be trained with just the original features

present. Training of the control neural network will need to be performed only once at

the start of the process. A potential engineered feature will be added to the feature vector

and to a new neural network so that it can be evaluated. The difference between the

control neural network’s loss function and the engineered neural network’s loss function

will become the score returned by the objective function. Scores above 0 do not improve

the neural network’s predictive power; scores below 0 improve the neural network. The

genetic programming algorithm will strive to attain scores below 0.

It will be critical to optimize the computational performance of the loss function.

There are numerous opportunities to optimize this function. One potential optimization is

61

to decrease the size of the deep neural network and the number of training iterations,

thereby decreasing training effectiveness. However, as long as both the control and test

neural network receive equal treatment, the results should indicate if the engineered

features are improving the neural network loss function result. It is important to

remember that the goal of the objective function is not to fully train the neural network.

Instead, the goal is to gain some indication of the effectiveness of the engineered features.

Other novel techniques will be evaluated to produce an objective function with

acceptable performance.

The second objective will be to avoid the expressions that are known to not improve

a deep neural network’s effectiveness (Heaton, 2016). Earlier research determined that

counts, differences, logs, power functions, rational polynomials, and radicals were not

particularly effective engineered features for deep learning. Similarly, earlier research

showed that deep neural networks benefited from polynomial, ratio, and rational

difference features. Engineered features that resemble polynomial, ratio, and rational

difference will receive a score bonus.

Experimental Design

To overcome the issues and barriers previously mentioned, a series of experiments

will be conducted. The results from the first four experiments will identify the design

characteristics of the genetic programming elements identified in the previous section.

Specifically, these experiments will show how to design constraints, measure the success

of engineered features, and analyze the population. The proposed experiments are listed

here:

• Experiment 1: Limiting the Search Space

62

• Experiment 2: Establishing Baseline

• Experiment 3: Genetic Ensembles

• Experiment 4: Population Analysis

• Experiment 5: Objective Function Design

• Experiment 6: Automated Feature Engineering

Each of these experiments will be measured as described in the next section.

Measures

Neural networks are a stochastic model, and measuring the relative performance of

the individual training runs can be difficult. This randomness first occurs because neural

networks are initialized with random weights. The randomness continues with the

stochastic gradient descent-training algorithm that chooses randomly sampled mini-

batches to train the neural network. This randomness in the training process prevents two

neural network training runs from producing the same training result.

Bagging (Breiman, 1996) is an ensemble technique that turns the randomness of the

neural network into a strength. Bagging trains many neural networks and averages the

results together. All measures of neural networks performed by this dissertation will be

bagged in a method similar to that of Prechelt (1994). If bagging does not provide the

stability to perform accurate measures, then dropout may also be considered. Dropout is

related to bagging in that each set of dropped out neurons can be considered a bagging

cycle. Measurement of both feature importance and neural network accuracy will use

either bagging or dropout. No matter the technique chosen, it will be applied across all

measures performed in this research.

63

Two primary metrics will be considered for this dissertation: feature importance and

network error. Feature importance determines how important an individual member of

the feature vector is to the predictions of the neural network. Neural network error, the

second metric, determines the accuracy of a neural network. Both metrics are described

in this section.

Feature importance can be measured for a model in two different ways: model

agnostic and model dependent. A model agnostic calculation measures feature

importance purely by querying the model. Internal analysis of the model is not needed. A

model agnostic metric will work with any type of model, including a neural network,

random forest, or support vector machine (SVM). Permutation feature importance

(Breiman, 2001) is a model agnostic calculation technique that this research will

investigate. Additionally, the model dependent approach of analyzing the weights of the

neural network will also be considered. The choice of approach will remain as a

configuration option. Results will be reported on the approach that is the most consistent

measure of the importance of the neural network features.

It is also necessary to measure the accuracy of the neural network. The proposed

research will use the RMSE and multi-class log loss error functions. RMSE will be the

error function for all regression problems, and multi-class log loss will be calculated for

classification. RMSE (McKinney, 2012) and log loss are given in the following

equations:

𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒊̂ − 𝒚𝒊)𝟐𝒏‖𝒚‖

𝒊=𝟏

‖𝒚‖

(9)

64

𝑴𝑳𝒐𝒈𝑳𝒐𝒔𝒔 = −
𝟏

‖𝒚‖
∑ ∑ 𝒚𝒊,𝒋𝐥𝐨𝐠 (𝒚̂𝒊,𝒋)

‖𝒚‖

𝒋=𝟏

𝑵

𝒊=𝟏

(10)

For both equations, N represents the number of training set elements. The vector y-

hat represents the actual output vector from the neural network, and the vector y

represents the expected output from the neural network.

Whether measuring accuracy or feature importance, bagging or dropout will be

employed, and the lowest metric will be reported. The presentation format for the results

of each experiment will be provided in the next sections.

Experiment 1: Limiting the Search Space

The first experiment continues feature engineering research performed prior to this

dissertation (Heaton, 2016). This earlier research demonstrated that neural networks,

decision trees, random forests, and gradient boosting machines benefited from different

types of engineered feature. Additionally, the research showed that there were several

types of engineered feature that were not particularly easy for a neural network to learn

on its own. If a neural network can learn to synthesize an engineered feature on its own,

adding this feature will not be particularly helpful to the neural network.

The search space of the proposed genetic programming-based algorithm can be

narrowed down. The process entails constraining the genomes to expressions similar to

expressions that are known to be difficult for the neural networks to synthesize. Heaton

(2016) shows the effectiveness of a deep neural network learning to synthesize several

types of engineered feature. The neural network learned single-feature transformations,

such as log, polynomial, rational polynomial, power, quadratic, and square root without

problems. However, multi-featured transformations were not as simple. The neural

65

network could calculate counts and differences. Rational difference and simple ratios

were more difficult for the neural network.

Experimental Design

The first experiment will examine the effectiveness of other expression types with

neural networks using the same technique as a previous investigation (Heaton, 2016).

This method for testing an expression involves generating a data set that uses an outcome

that is the result of the expression being tested as well as randomly sampled values for the

input. If the neural network converges to a low RMSE error, then the neural network can

learn the expression. Furthermore, engineered features in the same format as that

expression are more likely to produce more accurate neural networks.

Results Format

The results from this experiment will be reported in tabular format with the

following columns: expression, name, RMSE/Log Loss, and genetic program RMSE.

Consistent with Heaton (2016), the lowest RMSE/Log Loss of five training processes

will be reported. The result format from this experiment will appear similar to Table 2.

Table 2. Experiment 1 results format, GP vs. neural network

Name Expression RMSE/

Log Loss

GP RMSE/

Log Loss

1-1 Ratio 𝑥1

𝑥2

1-2 Ratio

Difference

𝑥1 − 𝑥2

𝑥3 − 𝑥4

...

Genetic programs can be taught to approximate expressions, just like neural

networks. While the original research did not evaluate genetic programming, seeing the

66

error for the genetic program might give an indication of the ability of genetic

programming to synthesize the expressions. It is expected that genetic programming will

easily synthesize any of the expressions and achieve a low error. If genetic programming

does not achieve a low error, the hyper-parameters for the genetic programming

algorithm will be tuned.

Experiment 2: Establishing Baseline

For the dissertation algorithm to be effective, engineered features from this algorithm

must enhance neural network accuracy. To measure this performance, a number of

public and synthetic data sets will evaluate it. It is necessary to collect a baseline RMSE

or log loss of a deep neural network with that data set that receives no help from the

dissertation algorithm. The neural network topology, or hyper-parameters, will be

determined experimentally. It is important that the topology include enough hidden

neurons that the data set can be learned with reasonable accuracy.

Experimental Design

The baseline experiment will provide a neural network result to compare those from

the dissertation algorithm. Not all data sets will benefit from feature engineering, so it is

important to select a number of real world and synthetic data sets. The initial collection

of data sets is listed later in this chapter. Additional data sets will be added or generated

if needed to find a data set that demonstrates improvement from engineered features.

Each neural network will be trained until the validation error no longer improves.

Several runs will be conducted, and the lowest error will be reported. Bagging or dropout

will be conducted to get a constant result, as previously described. Training parameters

and neural network topology will be set as defined in the previous section, “Measures.”

67

Results Format

The results from this experiment will be reported in tabular format with the

following columns: data set number, name, network topology, RMSE/Log Loss. The

result format from this experiment will appear similar to Table 3.

Table 3. Experiment 2 result format, neural network baseline

Name Topology RMSE/Log Loss

2-1 Auto MPG Regression:

5:20:15:3

2-2 Wisconsin

Breast Cancer

Classification

15:20:15:1

...

Experiment 3: Genetic Ensembles

Neural networks and genetic programs can both function as regression and classifier

models. It is possible to combine models that are trained to accomplish the same

objective into ensembles (Dietterich, 2000). A simple blending ensemble takes the

output from several models and uses another model type such as a neural network,

generalized linear model (GLM), or simple average to combine the results of the member

models.

Model ensembles work best when the member models are orthogonal. In other

words, they do not always produce the same decision (Dietterich, 2000). In some ways,

the models can be considered complex engineered features that are fed into the model

that makes the final decision. Further experiments will refine these complex genetic

program models into features that can augment the original feature vector.

68

Experimental Design

Experiment 3 parallels Experiment 2 to some degree. However, instead of evaluating

individual neural networks, ensembles of neural networks and genetic programs are

evaluated for each of the data sets. If the score of a particular data set is improved from

neural network to ensemble, there is a chance that a further refined genetic programing

engineered feature from this dissertation might be able to improve the neural networks

accuracy.

Two different ensemble architectures will be considered for this experiment. The

first ensemble, shown in Figure 12, uses a neural network as the ensemble fed by N

genetic program expressions. The second ensemble, shown in Figure 13, uses a

combination of one neural network (from experiment 1) and N genetic program

expressions to form an ensemble that is aggregated by either a generalized regression

model (GLM) or a linear regression ensemble.

Figure 12. Neural network genetic program ensemble

69

Figure 13. AVG/GLM neural network genetic program ensemble

In both cases, the inputs to the ensemble member models are those from the original

feature vector. The inputs to the ensemble component (neural network, GLM or AVG)

are the single-valued outputs from the ensemble members. As a result, the ensemble

component will have a number of inputs equal to the number of ensemble members. The

output from the ensemble component (ŷ) is considered to be the prediction of the

ensemble model, and it is the value that allows the accuracy of the ensemble’s prediction

to be reported.

To determine whether to use a GLM or AVG as the ensemble, it is necessary to

evaluate its performance for a single classification and regression data set. The results

will be reported only for the chosen ensemble algorithm. Additionally, the program will

also report the results for the data sets that formed the basis for the ensemble algorithm.

Results Format

The results from this experiment will be reported in tabular format with the

following columns: data set number, name, and the RMSE/Log Loss for the neural

network ensemble, as well as the AVG or GLM ensemble. For each of the two

70

ensembles, the RMSE/Log Loss will be reported for 3, 5, and 10 ensemble members (N).

The result format from this experiment will appear similar to Table 4.

Table 4. Experiment 3-result format, neural network genetic program ensemble

 Neural Network

Ensemble

AVG/GLM

Ensemble

Name N=3 N=5 N=10 N=3 N=5 N=10

3-1 Auto MPG ## ## ## ## ## ##

3-2 Wisconsin Breast Cancer ## ## ## ## ## ##

...

This experiment will indicate early if genetic programming can automatically

synthesize information to the data set that the neural network alone could not determine.

The results of Experiment 3 can be compared to Experiment 2. For the data sets where

the ensemble performed better than the neural network alone, there is hope that genetic

programming can engineer a viable feature. If Experiment 3 receives a better result on

the ensemble than Experiment 2 did with a neural network alone, a viable feature has

already been engineered.

The comparative analysis of Experiments 2 and 3 will be reported in tabular form,

similar to Table 5.

Table 5. Experiments 2 & 3 comparative analysis format

Name Experiment 1

RMSE/

Log Loss

Experiment 2

Best RMSE/

Log Loss

Best

3b-1 Auto MPG ### ### Experiment 2

3b-1 Wisconsin Breast Cancer ### ### Experiment 1

...

71

Experiment 4: Population Analysis

Previous experiments fit genetic programs to function as complete models in their

own right. These complete models might use the entire feature vector and be complex.

Features that are engineered by human analysis are usually simple combinations of a

handful of the original feature vector. The purpose of this experiment is to determine if

the complex genetic programming models can be distilled to a representation that might

give insight on how to combine elements of the original feature vector into viable,

engineered features. These simpler features might perform enough of the calculation to

help augment the data for a neural network.

Experimental Design

The input data set will allow the generation of several candidate solutions. This

process to generate the ensemble members will be the same as in Experiment 3. Figure

14 shows the overall flow for generating the candidate solutions.

Figure 14. Generate candidate solutions

Unlike Experiment 3, the value of N will be larger. More candidate solutions create

more data from which the program can find a pattern. The program searches for the

72

pattern of pairs of input features that are often connected by a common operator, higher

in the tree. Figure 15 shows a hypothetical example of a pattern.

Figure 15. Branches with common structures

This figure shows three branches that might be present on trees from a much larger

forest. The three branches always have the features a and h united by a division operator

higher in the branch. Of course, these branches are part of complete trees in the forest of

candidate solutions. Partial branches are shown for clarity and brevity. The fact that a

and h often occur together in a ratio might indicate that final engineered features use

these two in a ratio. This information could allow the construction of the features

outright. It could also narrow the search space for a given data set.

Results Format

The results from this experiment will be reported in tabular format with the

following columns: data set number, name, and the patterns found. Patterns will be

73

reported in a format such as “a/b”, “a*b”, or “(a+b)/c”. The result format from this

experiment will appear similar to Table 6.

Table 6. Experiment 4 results format, patterns in genetic programs

Name Patterns

4-1 Auto MPG (x1/x2)

(x2*x3)

((x1*x2)+x1)

4-2 Wisconsin Breast Cancer (x2*x3)

... … ...

Experiment 5: Objective Function Design

Evolutionary algorithms work through a selection process that is based on natural

selection (Holland, 1975). To select from among the genomes, it is necessary to evaluate

the effectiveness of the candidate-engineered features relative to each other. Several

algorithms determine the feature importance of the neural network. For this research, a

feature-ranking algorithm should be relatively stable, despite the stochastic nature of

neural networks. Feature ranking stability will be measured by the degree to which

multiple neural networks produce the same ranking of features for the same data set.

The goal of this experiment is to determine an effective feature ranking algorithm for

the proposed dissertation research. The two main considerations for feature ranking are

the following:

• Which feature-ranking algorithm is the most stable?

• How far should a neural network be trained?

It is desirable to keep the objective function as computationally inexpensive as

possible. The faster the objective function executes, the larger a search space to be

74

covered. To evaluate feature ranking, it is not necessary to train the neural networks to

their maximum accuracy. Instead, it is crucial to train the neural network to the point that

the ranking algorithm can give a stable assessment of the relative importance of each of

the features. This experiment will strive to provide answers to both of these concerns.

Experimental Design

This experiment will evaluate the ranking of the original feature vector for each of

the data sets considered for this dissertation. Each data set will be trained multiple times

with its feature ranking evaluated at each training iteration. A validation holdout set will

allow the training algorithm to know the stopping point. Once the validation set’s error

no longer improves, training will stop. The percent validation improvement will be

reported for the iteration where the feature ranking first stabilized to the same order as the

final feature ranking. The idea is that training could be stopped at the point that the

validation error improvement hits this point, and a reasonably accurate feature rank could

be determined.

Results Format

Each of the data sets will be evaluated, and the minimum validation set improvement

will be reported. Additionally, the final feature rank will also be reported. The results

will appear similar to Table 7.

Table 7. Experiment 5 results format, evaluating feature ranking

Name Rank Weight Permutation

5-1 Auto MPG x3,x2,x1,x10,x11 ### ###

5-2 Wisconsin Breast

Cancer

x3,x2,x4,x10,x1 ### ###

...

75

Experiment 6: Automated Feature Engineering

The final planned experiment brings the results of the previous five into the

automatic feature-engineering algorithm, thereby accomplishing the objective of this

dissertation. The goal of Experiment 6 is to compare each data set. It will show the

neural network validation error next to the same neural network that has been augmented

with features that the dissertation algorithm engineered.

Experimental Design

This experiment will be conducted similarly to Experiment 1, except that the neural

networks will be augmented with features that were engineered from each of the data

sets. The dissertation algorithm’s effectiveness will be evaluated by comparing the

neural network’s accuracy on the augmented data set with the baseline result in

experiment 6. Comparing the results of the dissertation algorithm to the Experiment 1

baseline should show that some of the data sets will have improved results.

The feature-engineering algorithm cannot be specified exactly at this point because

the experiments 1, 3, 4, and 5 will guide its development. Experiment 2 establishes a

baseline to compare the algorithm to. Additionally, Experiment 6 may undergo several

iterations as the algorithm is enhanced and its performance measured. The final

algorithm, measured by Experiment 6, might look similar to Figure 16.

76

Figure 16. High-level overview of proposed algorithm

This algorithm uses two neural networks. Neural Network 1 evaluates a population

of potential engineered features. This population will be constrained using information

learned from Experiment 1. The objective function comes directly from Experiment 6.

Experiment 4 will provide information to refine the candidate expression from the

population into potential engineered features. These engineered features will be ranked

and evaluated using Neural Network 2 and examined to join a list of top engineered

expressions.

77

The above flow chart will likely change to some degree as the experiments are

evaluated and a system is built to automatically engineer features. The goal will remain

to engineer features that are able to boost the baseline performance (Experiment 1) of the

data sets.

Two neural networks are trained. The first neural network will be trained on the

original predictors (x) and the second on the augmented feature vector. Both are trained

to produce the outcome (y) that this algorithm does not alter. Figure 17 shows the setup

for the final evaluation.

78

Figure 17. Dissertation algorithm evaluation

This figure closely resembles Figure 11. Essentially, the program forks the input

data set to be fed to two neural networks for training. The leftmost neural network trains

without the proposed algorithm, and the neural network on the right trains with the

proposed algorithm. The objective is to determine if the neural network with augmented

predictors can perform better than a neural network with only the original features.

79

Results Format

The results of this experiment will show which features could be engineered for each

of the data sets in the dissertation. The results will contain the following columns:

experiment number, data set name, engineered features employed, neural network error

(RMSE or log loss), augmented neural network error (RMSE or log loss), and change by

using algorithm. The neural network error column will report exactly the same values as

Experiment 1 because this experiment compares the dissertation algorithm to the neural

network baseline. Table 8 shows the anticipated format for the results of Experiment 6:

Table 8. Experiment 6 results format, engineered feature effectiveness

Name Engineered

Features

Baseline

Error

Augmented

Error

Error

Change

6-1 ####

6-2 ####

...

It is assumed that the algorithm will not find an engineered feature set for each data

set. The number of data sets that a viable engineered feature and the degree to which the

error of the neural network decreases will be important factors for measuring the

usefulness of the algorithm developed.

Real World Data sets

The success of an automatic feature-engineering algorithm will ultimately be

measured by its success in the generation of actual features for a real world data set. The

following will be the primary sources for real world data sets:

• UCI Machine Learning Repository (Newman & Merz, 1998)

80

• PROBEN1 Datasets (Prechelt, 1994)

• Kaggle Competitions

Several data sets will come from the UCI machine learning set. Time will be needed

to standardize each of these data sets in this dissertation. Data sets that have the following

attributes will be favored:

• No image or audio data sets

• At least 10 numeric (continuous) features

• Features should be named, such as measurements, money or counts

The following five UCI data sets appear to be good candidates for this research:

• Adult data set

• Wine data set

• Car evaluation data set

• Wine quality data set

• Forest fires

Other UCI data sets will be considered, as needed, for this research.

Prechelt (1994) introduced the PROBEN1 collection of data sets. This collection

contains 13 standardized data sets. The paper that presented PROBEN1 has neural

network benchmark results. Additionally, the PROBEN1 paper has over 900 citations,

many of which publish additional neural network results on these data sets. These

characteristics make the PROBEN1 data sets good candidates for comparison in this

study.

Kaggle data sets may also be considered for benchmarking this dissertation. Many

Kaggle data sets are compatible with the previously stated desired characteristics of data

81

sets for this dissertation research. Additionally, because Kaggle is an open competition,

there are numerous published results for a variety of modeling techniques.

Synthetic Data sets

Not all data sets will see increased accuracy from engineered features, especially if

the underlying data do not contain relationships that feature engineering can expose. As

a result, it will be necessary to create data sets that are designed to include features that

are known to benefit deep neural networks. The feature-engineering algorithm in this

research will be tested to see if it is capable of finding the engineered features that are

known to help neural networks predict these generated data sets.

The program will generate data sets that contain outcomes that are designed to

benefit from feature engineering of varying degrees of complexity. It is necessary to

choose engineered features that the deep neural networks cannot easily learn for

themselves. The goal is to engineer features that help the deep neural network—not

features that would have been trivial for the network to learn on its own. In previous

research Heaton (2016) formulated a simple way to learn the types of features that benefit

a deep neural network was devised. Training sets were generated in which the expected

output was the output of the engineered feature. If the model can learn to synthesize the

output of the engineered feature, then adding this feature will not benefit the neural

network. This process is similar to the common neural network example of teaching

itself to become an XOR operator. Because neural networks can easily learn to perform

as XOR operators, the XOR operation between any two original features would not make

a relevant engineered feature.

82

Resources

The hardware and software components necessary for this dissertation are all

standard, readily available, common, and off-the-shelf personal computer system

components and software. Two quadcore Intel I7 Broadwell-equipped machines with 16

gigabytes of RAM each are available for this research. These systems will perform the

majority of computations needed to support this research. If additional processing power

is required Amazon AWS virtual machines will be used.

The Java programming language (Arnold, Gosling, & Holmes, 1996) will serve as

the programming language to complete this research. The Java 8 version (JDK 1.8) will

provide the specific implementation of the programming language. In addition, Python

3.5 (Van Rossum, 1995) will work in conjunction with Scipy (Jones, Oliphant, Peterson,

& al., 2001), scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi et al., 2016) for

deep learning. The Python machine learning packages will be useful to compare select

neural networks and feature combinations with the Encog library.

Encog version 3.3 (Heaton, 2015) will provide the deep learning and genetic

programming portions of this research. Encog provides extensive support for both deep

learning and genetic programming. Additionally, Encog is available for both the Java

and C# platforms. The author of this dissertation wrote much of the code behind Encog

and has extensive experience with the Encog framework.

The required equipment is currently available without restrictions. If additional

hardware is needed, it can be acquired within a reasonable time to continue the research

process. In the event of hardware failure, all equipment is readily available from multiple

online sources for replacement within a week. All required software is currently available

83

for the execution of this research, and the programming components have already been

acquired. In the event of problems with the current software or catastrophic system

failure of the system, the application development software is available for reacquisition

from the original sources online.

Both the vendor and online community provide support for the programming

environment in the event that there are issues with the software or with implementation of

the various components. There is currently no anticipated need to perform interaction

with end users or study participants because of the type of research project. There are no

anticipated costs for hardware or software beyond Amazon AWS fees. If any Amazon

AWS fees are incurred, they will be paid with the budget set aside to acquire additional

and/or replacement hardware, software and processing fees. There will be no financial

costs to Nova Southeastern University for this project.

Summary

This dissertation will leverage genetic programming to create an algorithm that can

engineer features that might increase the accuracy of a deep neural network. Not all data

sets will contain features that can be engineered into a better feature vector for the neural

network. As a result, it is important to use a number of different data sets to evaluate the

proposed algorithm. The effectiveness of the algorithm will be determined by evaluating

the change in error between two neural networks—one has access to the algorithm’s

engineered features and the other does not.

Combining the knowledge from five planned experiments will create the proposed

algorithm. The sixth experiment will perform a side-by-side benchmark between data

sets augmented with features engineered by the algorithm and those that are not. The

84

effectiveness of the algorithm can be measured by the degree to which the error decreases

for the feature-engineered data set, when compared to an ordinary data set.

The five experiments will evaluate how to leverage different aspects of genetic

programming for neural network feature engineering. Expressions that are beneficial to

neural networks will be explored. Objective function design will be examined. Neural

network feature ranking will be optimized for the quickest results. Ensembles will

possibly detect data sets that could benefit the most from feature engineering.

Information gained from all of these algorithms will guide the algorithm design.

After completing the project, the final dissertation report will be distilled and

submitted as an academic paper to a journal or conference. At that point, the source code

necessary to reproduce this research will be placed on the author’s GitHub1 repository.

For reasons of confidentiality, the source code will not be publicly distributed prior to

formal publication of the dissertation report.

1 http://www.github.com/jeffheaton

85

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Devin, M. (2016).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv
preprint arXiv:1603.04467.

Anscombe, F. J., & Tukey, J. W. (1963). The examination and analysis of residuals.
Technometrics, 5(2), 141-160.

Arnold, K., Gosling, J., & Holmes, D. (1996). The Java programming language (Vol. 2): Addison-
wesley Reading.

Bahnsen, A. C., Aouada, D., Stojanovic, A., & Ottersten, B. (2016). Feature Engineering Strategies
for Credit Card Fraud Detection. Expert Systems with Applications.

Balkin, S. D., & Ord, J. K. (2000). Automatic neural network modeling for univariate time series.
International Journal of Forecasting, 16(4), 509-515.

Banzhaf, W. (1993). Genetic programming for pedestrians. Paper presented at the Proceedings
of the 5th International Conference on Genetic Algorithms, ICGA-93, University of
Illinois at Urbana-Champaign.

Banzhaf, W., Francone, F. D., Keller, R. E., & Nordin, P. (1998). Genetic programming: an
introduction: on the automatic evolution of computer programs and its applications:
Morgan Kaufmann Publishers Inc.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., . . . Bengio, Y.
(2012). Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590.

Bellman, R. (1957). Dynamic Programming. Princeton, NJ, USA: Princeton University Press.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends in Machine
Learning, 2(1), 1-127.

Bengio, Y. (2013). Representation learning: a review and new perspectives. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., . . . Bengio, Y.
(2010). Theano: a CPU and GPU math expression compiler. Paper presented at the
Proceedings of the Python for Scientific Computing Conference (SciPy).

Bertsekas, D. P. (1999). Nonlinear programming.

86

Bíró, I., Szabó, J., & Benczúr, A. A. (2008). Latent Dirichlet allocation in web spam filtering. Paper
presented at the Proceedings of the 4th international workshop on Adversarial
information retrieval on the web.

Bishop, C. M. (1995). Neural networks for pattern recognition: Oxford University Press.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic Services,
Interoperability and Web Applications: Emerging Concepts, 205-227.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine
Learning Research, 3, 993-1022.

Bottou, L. (2012). Stochastic gradient descent tricks Neural Networks: Tricks of the Trade (pp.
421-436): Springer.

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2), pp. 211-252.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Breiman, L., & Friedman, J. H. (1985). Estimating optimal transformations for multiple regression
and correlation. Journal of the American Statistical Association, 80(391), 580-598.

Brosse, S., Lek, S., & Dauba, F. (1999). Predicting fish distribution in a mesotrophic lake by
hydroacoustic survey and artificial neural networks. Limnology and Oceanography,
44(5), 1293-1303.

Brown, B. F. (1998). Life and health insurance underwriting: Life Office Management Association.

Brown, M., & Lowe, D. G. (2003). Recognising panoramas. Paper presented at the ICCV.

Chea, R., Grenouillet, G., & Lek, S. (2016). Evidence of Water Quality Degradation in Lower
Mekong Basin Revealed by Self-Organizing Map. PloS one, 11(1).

Cheng, B., & Titterington, D. M. (1994). Neural networks: a review from a statistical perspective.
Statistical science, 2-30.

Cheng, W., Kasneci, G., Graepel, T., Stern, D., & Herbrich, R. (2011). Automated feature
generation from structured knowledge. Paper presented at the Proceedings of the 20th
ACM International Conference on Information and Knowledge Management.

87

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2015). Gated feedback recurrent neural networks.
arXiv preprint arXiv:1502.02367.

Coates, A., Lee, H., & Ng, A. Y. (2011). An analysis of single-layer networks in unsupervised
feature learning. Paper presented at the Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics.

Coates, A., & Ng, A. Y. (2012). Learning feature representations with k-means Neural Networks:
Tricks of the Trade (pp. 561-580): Springer.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant colonies. Paper
presented at the Proceedings of the First European Conference on Artificial Life.

Crepeau, R. L. (1995). Genetic evolution of machine language software. Paper presented at the
Proceedings of the Workshop on Genetic Programming: From Theory to Real-World
Applications, Tahoe City, California, USA.

Cuayáhuitl, H. (2016). SimpleDS: A Simple Deep Reinforcement Learning Dialogue System. arXiv
preprint arXiv:1601.04574.

Davis, J. J., & Foo, E. (2016). Automated feature engineering for HTTP tunnel detection.
Computers & Security, 59, 166-185.

Dawkins, R. (1976). The selfish gene: Oxford university press.

De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-
entropy method. Annals of operations research, 134(1), 19-67.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms: John Wiley & Sons,
Inc.

Dietterich, T. G. (2000). Ensemble methods in machine learning Multiple classifier systems (pp.
1-15): Springer.

Diplock, G. (1998). Building new spatial interaction models by using genetic programming and a
supercomputer. Environment and Planning, 30(10), 1893-1904.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2), 179-188.

88

Freeman, M. F., & Tukey, J. W. (1950). Transformations related to the angular and the square
root. The Annals of Mathematical Statistics, 607-611.

Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-
202.

Garson, D. G. (1991). Interpreting neural network connection weights.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. Paper presented at the International Conference on Artificial Intelligence and
Atatistics.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Paper
presented at the International Conference on Artificial Intelligence and Statistics.

Goh, A. (1995). Back-propagation neural networks for modeling complex systems. Artificial
Intelligence in Engineering, 9(3), 143-151.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401.

Gruau, F. (1996). On using syntactic constraints with genetic programming. Paper presented at
the Advances in Genetic Programming.

Guo, H., Jack, L. B., & Nandi, A. K. (2005). Feature generation using genetic programming with
application to fault classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 35(1), 89-99.

Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2008). Feature extraction: foundations and
applications (Vol. 207): Springer.

Gybenko, G. (1989). Approximation by superposition of sigmoidal functions. Mathematics of
Control, Signals and Systems, 2(4), 303-314.

Heaton, J. (2015). Encog: library of interchangeable machine learning models for java and c#.
Journal of Machine Learning Research, 16, 1243-1247.

Heaton, J. (2016). An empirical analysis of feature engineering for predictive modeling. Paper
presented at the IEEE Southeastcon 2016, Norfolk, VA.

Hebb, D. O. (1949). The organization of behavior: New York: Wiley.

89

Hinton, G., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets.
Neural Computing, 18(7), 1527-1554. doi:10.1162/neco.2006.18.7.1527

Hinton, G., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786), 504-507.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische
Universität München.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735-1780.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. University of Michigan Press.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2), 251-257.

Ildefons, M. D. A., & Sugiyama, M. (2013). Winning the Kaggle Algorithmic Trading Challenge
with the Composition of Many Models and Feature Engineering. IEICE transactions on
information and systems, 96(3), 742-745.

Janikow, C. Z. (1996). A methodology for processing problem constraints in genetic
programming. Computers & Mathematics with Applications, 32(8), 97-113.

Jones, E., Oliphant, T., Peterson, P., & al., e. (2001). SciPy: open source scientific tools for
Python. Retrieved from http://www.scipy.org/

Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. Advances in
psychology, 121, 471-495.

Kalchbrenner, N., Danihelka, I., & Graves, A. (2015). Grid long short-term memory. arXiv preprint
arXiv:1507.01526.

Kanter, J. M., & Veeramachaneni, K. (2015). Deep feature synthesis: towards automating data
science endeavors. Paper presented at the IEEE International Conference on Data
Science and Advanced Analytics (DSAA), 2015. 36678 2015. .

Kennedy, J. (2010). Particle swarm optimization Encyclopedia of Machine Learning (pp. 760-
766): Springer.

Knuth, D. E. (1997). The art of computer programming, volume 1 (3rd ed.): fundamental
algorithms: Addison Wesley Longman Publishing Co., Inc.

http://www.scipy.org/

90

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural
selection: MIT Press.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer.

Le, Q. V. (2013). Building high-level features using large scale unsupervised learning. Paper
presented at the Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on Acoustics.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2014). Automatic
construction and natural-language description of nonparametric regression models.
arXiv preprint arXiv:1402.4304.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Paper presented at
the The Proceedings of the Seventh IEEE International Conference on Computer Vision,
1999.

Masters, T. (1993). Practical neural network recipes in C++: Morgan Kaufmann.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4), 115-133.

McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and
IPython: O'Reilly Media, Inc.

Miller, J. F., & Harding, S. L. (2008). Cartesian genetic programming. Paper presented at the
Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary
Computation, Atlanta, GA, USA.

Miller, J. F., & Thomson, P. (2000). Cartesian genetic programming Lecture Notes in Computer
Science (Vol. 1802, pp. 121-132): Springer.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. an introduction to computational geometry.
Science, 165(3895).

Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression: a second course in statistics.
Addison-Wesley Series in Behavioral Science: Quantitative Methods.

Mozer, M. C. (1989). A focused back-propagation algorithm for temporal pattern recognition.
Complex systems, 3(4), 349-381.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer
journal, 7(4), 308-313.

91

Neshatian, K. (2010). Feature Manipulation with Genetic Programming.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate
O (1/k2). Paper presented at the Soviet Mathematics Doklady.

Newman, C. L. B. D. J., & Merz, C. J. (1998). UCI repository of machine learning databases.

Ng, A. Y. (2004). Feature selection, L 1 vs. L 2 regularization, and rotational invariance. Paper
presented at the Proceedings of the twenty-first international conference on Machine
learning.

Nguyen, D. H., & Widrow, B. (1990). Neural networks for self-learning control systems. Control
Systems Magazine, IEEE, 10(3), 18-23.

Nordin, P. (1994). A compiling genetic programming system that directly manipulates the
machine code. In K. E. Kinnear, Jr. (Ed.), Advances in Genetic Programming (pp. 311-
331): MIT Press.

Nordin, P., Banzhaf, W., & Francone, F. D. (1999). Efficient evolution of machine code for CISC
architectures using instruction blocks and homologous crossover. In L. Spector, W. B.
Langdon, U.-M. O'Reilly, & P. J. Angeline (Eds.), Advances in Genetic Programming (Vol.
3, pp. 275--299). Cambridge, MA, USA: MIT Press.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381, 607--609.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Dubourg, V.
(2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning
Research, 12, 2825-2830.

Perkis, T. (1994). Stack-Based Genetic Programming. Paper presented at the International
Conference on Evolutionary Computation.

Poli, R., Langdon, W. B., & McPhee, N. F. (2008). A Field Guide to Genetic Programming: Lulu
Enterprises, UK Ltd.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5), 1-17.

Prechelt, L. (1994). Proben1: A set of neural network benchmark problems and benchmarking
rules.

Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets: Cambridge University Press.

92

Robinson, A., & Fallside, F. (1987). The utility driven dynamic error propagation network:
University of Cambridge Department of Engineering.

Rosenblatt, F. (1962). Principles of neurodynamics.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by
error propagation. Retrieved from

Russell, S., & Norvig, P. (1995). Artificial intelligence: a modern approach.

Scott, S., & Matwin, S. (1999). Feature engineering for text classification. Paper presented at the
ICML.

Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in neural
information processing systems, 9, 155-161.

Sobkowicz, A. (2016). Automatic Sentiment Analysis in Polish Language Machine Intelligence and
Big Data in Industry (pp. 3-10): Springer.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1), 1929-1958.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2), 99-127.

Stigler, S. M. (1986). The history of statistics: the measurement of uncertainty before 1900:
Belknap Press of Harvard University Press.

Sussman, G., Abelson, H., & Sussman, J. (1983). Structure and interpretation of computer
programs: MIT Press, Cambridge, Mass.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and
momentum in deep learning. Paper presented at the Proceedings of the 30th
International Conference on Machine Learning (ICML-13).

Teller, A. (1994). Turing completeness in the language of genetic programming with indexed
memory. Paper presented at the Proceedings of the First IEEE Conference on
Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence.

Timmerman, M. E. (2003). Principal component analysis (2nd Ed.). I. T. Jolliffe. Journal of the
American Statistical Association, 98, 1082-1083.

93

Tukey, J. W., Laurner, J., & Siegel, A. (1982). The use of smelting in guiding re-expression Modern
Data Analysis (pp. 83-102): Academic Press New York.

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Journal of Math, 58(345-363), 5.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(2579-2605), 85.

Van Rossum, G. (1995). Python tutorial, May 1995. CWI Report CS-R9526.

Wang, C., & Blei, D. M. (2011). Collaborative topic modeling for recommending scientific articles.
Paper presented at the Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

Wang, M., Li, L., Yu, C., Yan, A., Zhao, Z., Zhang, G., . . . Gasteiger, J. (2016). Classification of
Mixtures of Chinese Herbal Medicines Based on a Self‐Organizing Map (SOM). Molecular
Informatics.

Werbos, P. (1974). Beyond regression: new tools for prediction and analysis in the behavioral
sciences.

Werbos, P. (1988). Generalization of backpropagation with application to a recurrent gas market
model. Neural networks, 1(4), 339-356.

White, D. R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B. W., Kronberger, G., . . . Luke,
S. (2013). Better GP benchmarks: community survey results and proposals. Genetic
Programming and Evolvable Machines, 14(1), 3-29.

Worm, T., & Chiu, K. (2013). Prioritized grammar enumeration: symbolic regression by dynamic
programming. Paper presented at the Proceedings of the 15th Annual Conference on
Genetic and Evolutionary Computation, Amsterdam, The Netherlands.

Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z., Guenter, B., . . . Wang, H. (2014). An
introduction to computational networks and the computational network toolkit.
Retrieved from

Yu, H.-F., Lo, H.-Y., Hsieh, H.-P., Lou, J.-K., McKenzie, T. G., Chou, J.-W., . . . Chen-Wei, H. (2011).
Feature engineering and classifier ensemble for KDD cup 2010. Paper presented at the
JMLR: Workshop and Confrence Proceedings 1: 1-16.

Zhang, W., Huan, R., & Jiang, Q. (2016). Application of Feature Engineering for Phishing
Detection. IEICE transactions on information and systems, 99(4), 1062-1070.

94

Ziehe, A., Kawanabe, M., Harmeling, S., & Müller, K.-R. (2001). Separation of post-nonlinear
mixtures using ACE and temporal decorrelation. Paper presented at the Proceedings of
the International Workshop on Independent Component Analysis and Blind Signal
Separation (ICA2001).

