

Automated Feature Engineering for Deep Neural Networks with Genetic Programming

by

Jeff Heaton

An idea paper submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

College of Engineering and Computing

Nova Southeastern University

April 2016

2

Abstract

Feature engineering is a process that augments the feature vector of a

predictive model with calculated values that are designed to enhance the

model’s performance. Models such as neural networks, support vector

machines and tree/forest-based algorithms have all been shown to

sometimes benefit from feature engineering. Engineered features are

created by functions that combine one or more of the original features

presented to the model.

The choice of the exact structure of an engineered feature is dependent on

the type of machine learning model in use. Previous research shows that

tree based models, such as random forests or gradient boosted machines,

benefit from a different set of engineered features than dot product based

models, such as neural networks and multiple regression. The proposed

research seeks to use genetic programming to automatically engineer

features that will benefit deep neural networks. Engineered features

generated by the proposed research will include both transformations of

single original features, as well as functions that involve several original

features.

3

Introduction

This paper presents proposed research for an algorithm that will automatically

engineer features that will benefit deep neural networks for certain types of predictive

problems. The proposed research builds upon, but does not duplicate, prior published

research by the author. In 2008 the author introduced the Encog Machine Learning

Framework that includes advanced neural network and genetic programming algorithms

(Heaton, 2015). The Encog genetic programming algorithm introduced an innovative

method that allows dynamic constant nodes, rather than the static constant pool typical

used by tree based genetic programming.

The author of this dissertation also performed research that demonstrated the types of

manually engineered features most conducive to deep neural networks (Heaton, 2016).

The proposed research builds upon this prior research by leveraging the Encog genetic

programming algorithm to be used in conjunction with the proposed algorithm that will

automatically engineer features for a feedforward neural network that might contain

many layers. This type of neural network is commonly referred to as a deep neural

network (DNN).

This paper begins with an introduction of both neural networks and feature

engineering. The problem statement is defined and a clear dissertation goal is given.

Building upon this goal, a justification is given for the relevance of this research, along

with a discussion of the barriers and issues previously encountered. A brief review of

literature is provided to show how this research continues previous research in deep

learning. The approach that will be used to achieve the dissertation goal is given, along

with the necessary resources and planned schedule.

4

Most machine learning models, such as neural networks, support vector machines

(Smola & Vapnik, 1997), and tree-based models accept a vector of input data and then

output a prediction based on this input. These inputs are called features and the complete

set of inputs is called a feature vector. Many different types of data, such as pixel grids

for computer vision or named attributes describing business data can be mapped to the

neural network’s inputs (B. F. Brown, 1998).

Most business applications of neural networks must map input neurons to columns in

a database, this input is used to make a prediction. For example, an insurance company

might use the columns: age, income, height, weight, high-density lipoprotein (HDL)

cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride level (TGL) to

make suggestions about an insurance applicant (B. F. Brown, 1998). Regression neural

networks will output a real number, such as the maximum face amount to issue the

applicant. Classification neural networks will output a class that the input belongs to.

Figure 1 shows both of these neural networks.

5

Figure 1. Regression and classification network (original features)

The left neural network performs a regression and uses the original 6 input features

to determine the maximum face amount to issue an applicant. The right neural network

performs a classification and uses the same original 6 input features to determine the

underwriting class to place the insured into. The weights (shown as arrows) determine

what the final output will be. A backpropagation algorithm uses many sets of inputs with

known output to determine the weights. The neural network learns from existing data to

predict future data. The above networks have a single hidden layer. However, additional

layers can be added. Deep neural networks might have between 5 and 10 hidden layers

between the input and output layers. A bias neuron is commonly added to every layer

except the output layer. The bias neuron always outputs a consistent value, usually 1.0.

6

Bias neurons greatly enhance the neural network’s learning ability (B. Cheng &

Titterington, 1994).

The output of a neural network is determined by the output neurons. Processing the

value of each neuron, starting from the input layer, allows the output neurons to be

calculated. Equation 1 is used to calculate each neuron in a neural network.

𝑓(𝑥,𝑤, 𝑏) = 𝜙 (∑ (𝑤𝑖𝑥𝑖) + 𝑏
𝑖

)

Equation 1. Neuron calculation

The function phi (Φ) represents the transfer function, and is typically either a

rectified linear unit (ReLU) or one of the sigmoidal functions. The vectors w and x

represent the weights and input; the variable b represents the bias weight. Calculating the

weighted sum of the input vector (x) is the same as taking the dot product of the two

vectors. This is why neural networks are often referred to as being part of a larger class

of machine learning algorithms that are dot product based.

Feature engineering simply adds additional calculated features to the input vector

(Guyon, Gunn, Nikravesh, & Zadeh, 2008). It is possible to use feature engineering for

both classification and regression neural networks. Engineered features are essentially

calculated fields that are dependent on the other fields. Calculated fields are common in

business applications and can help human users to understand the interaction of several

fields in the original dataset. For example, human insurance underwriters benefit from

combining height and weight to calculate BMI. Likewise, human insurance underwriters

often use a ratio of the HDL, TGL and LDL cholesterol levels. These calculations allow

a single number to be compared to evaluate the health of the applicant. These

7

calculations might also be useful to the neural network. If the BMI and HDL/LDL ratio

were engineered as features, the classification network would look like Figure 2.

Figure 2. Neural network engineered features

In Figure 2 the BMI and HDL/LDL ratio values are added to the feature vector along

with the original input features. The entire feature vector is provided to the neural

network. These additional features might help the neural network to calculate the

maximum face amount. These two features could also be used for classification. BMI

and the HDL/LDL ratio are typical of the types of features that might be engineered for a

neural network. Such features are often ratios, summations, and powers of other features.

Adding BMI and the HDL/LDL ratio is relatively easy, as these are well known

8

calculations. Similar calculations might also benefit other datasets. Feature engineering

often involves combining original features with ratios, summations, differences and

power functions. Engineered features, such as BMI, that involve multiple original

features, are usually derived manually using intuition about the dataset.

Problem Statement

There is currently no automated means of engineering features for a deep neural

network that are a combination of multiple values from the original feature vector. Prior

feature engineering work has focused primarily upon transformation of a single feature or

upon models other than deep learning (Box & Cox, 1964; Breiman & Friedman, 1985;

Freeman & Tukey, 1950). Feature engineering research focused on deep learning has

primarily dealt with high dimensional image and audio data (Blei, Ng, & Jordan, 2003;

M. Brown & Lowe, 2003; Coates, Lee, & Ng, 2011; Coates & Ng, 2012; Le, 2013;

Lowe, 1999; Scott & Matwin, 1999).

Machine learning performance is heavily dependent on the representation of the

feature vector. Feature engineering is an important but labor-intensive component of

machine learning applications (Bengio, 2013). As a result, much of the actual effort in

deploying machine learning algorithms goes into the design of preprocessing pipelines

and data transformations (Bengio, 2013).

Deep neural networks (Geoffrey E. Hinton, Osindero, & Teh, 2006) can benefit

from feature engineering. Most research into feature engineering in the deep learning

space has been in the areas of image and speech recognition (Bengio, 2013). Such

techniques are successful in the high-dimension space of image processing and often

amount to dimensionality reduction techniques (G E Hinton & Salakhutdinov, 2006) such

9

as Principal Component Analysis (PCA) (Timmerman, 2003) and auto-encoders

(Olshausen & Field, 1996).

Dissertation Goal

The goal of this research is to use genetic programming to analyze a dataset and

automatically create engineered features that will benefit a deep neural network. These

engineered features will consist of mathematical transformations of one or more of the

existing features from the dataset. In completing this research, the successful outcome

will be an algorithm that derives successfully engineered features for an array of

synthetic and real datasets. A successfully engineered feature is a feature that decreases

the neural network’s prediction loss function when that feature is added to the input

feature vector of the neural network.

The proposed research focuses on datasets consisting of named features, as opposed

to datasets that contains large amounts of pixels or audio sampling data. A named feature

is considered a value such as income, height, weight or gender; named features are not

considered to be the color of a pixel at a particular coordinate or an audio sample at a

time-slice. For many predictive modeling applications, such as fraud monitoring, sales

forecasting, and intrusion detection, the features consist of these named values. Real-

world datasets, used for predictive modeling, can consist of a handful or several hundred

such features. The proposed algorithm would be ineffective for computer vision and

hearing applications.

10

Relevance and Significance

Since the introduction of multiple linear regression in the late 1800’s statisticians

have been employing creative means to transform model input to enhance model output

(Anscombe & Tukey, 1963; Stigler, 1986). These transformations usually applied a

single mathematical formula to an individual feature. For example, one feature might

have a logarithm applied; whereas, another feature might be raised to the third power.

Such transformations can significantly increase the performance of a model (Kuhn &

Johnson, 2013).

Considerable research has been focused on automated derivation of such

transformations. Freeman and Tukey (1950) reported on a number of transformations

useful for linear regression. Box and Cox (1964) conducted the seminal work on

automatic feature transformation and used a stochastic ad hoc algorithm to automatically

recommend transformations that might improve upon the results of linear regression.

This became known as the Box Cox transformation. While the Box Cox transformation

was capable of obtaining favorable transformations for linear regression, due to its

stochastic nature it often did not converge to the best transformation for an individual

feature. Numerous other transformations were created that used similar stochastic

sampling techniques (Anscombe & Tukey, 1963; Mosteller & Tukey, 1977; Tukey,

Laurner, & Siegel, 1982). Each of these algorithms focused on transformations of single

features for the linear regression model.

Breiman and Friedman (1985) took a considerable step forward by introducing the

alternating conditional expectation (ACE) algorithm that guaranteed optimal

transformations for linear regression. While all of the aforementioned algorithms were

11

designed for linear regression, they are often used to assist tree models, neural networks

and other models. Because ACE as designed for linear regression, it cannot guarantee

optimal transformations for other model types (Ziehe, Kawanabe, Harmeling, & Müller,

2001). Additionally, ACE transforms the entire feature vector by using separate

transformations to the features independently. Features that transform several original

input features collectively can produce favorable results (Yu et al., 2011).

Kaggle and ACM’s KDD Cup have seen feature engineering play an important role

in several winning submissions. Yu et al. (2011) reported on the successful application

of feature engineering to the KDD Cup 2010 competition. Ildefons and Sugiyama (2013)

were able to win the Kaggle Algorithmic Trading Challenge with an ensemble of models

and feature engineering. A manual process created the features engineered for these

competitions.

Barriers and Issues

Creating an algorithm to automatically engineer features, made up of one or more

original features, that is designed for a deep neural network is a difficult and challenging

problem. Most automated feature engineering algorithms are designed for simple linear

regression models. Further, most of these automated feature engineering methods

typically engineer features that are based only upon a single feature from the original

feature vector.

The output from a linear regression is simply a multi-term first-degree equation.

Because of its simplicity several mathematical techniques can be used to guarantee

optimal transformations. Deep neural networks have a much more complex structure

12

than linear regression. It will be a different challenge to engineer features for a deep

neural network than it is to engineer them for linear regression.

Previous automated feature engineering algorithms focused on the transformation of

a single original input feature. They do not combine multiple features to generate

engineered features such as BMI (that combines height and weight) or the HDL/LDL

ratio (that combines HDL, LDL and TGL). Searching for engineered features that

involve multiple original features will greatly increase the search space for engineered

features. This expanded search space will face the curse of dimensionality (Bellman,

1957) and require novel solutions to limit and prioritize the search space.

This problem is also difficult because not all datasets benefit from feature

engineering. Because of this it will be necessary to make use of a number of different

datasets from the UCI Machine Learning Repository (Newman & Merz, 1998). It will

also be necessary to generate several synthetic datasets that are designed to benefit from

certain types of features. It will take considerable experimentation to try all selected real

and synthetic datasets against the proposed solution.

Brief Review of Literature

The research proposed by this paper focuses primarily upon feature engineering and

how to apply it to deep neural networks. Evolutionary programming will be used to

provide an automated system to recommend new engineered features. The following

areas of literature are important to the proposed research:

• Feature engineering

• Neural Networks

• Deep Learning

13

• Genetic Programming

There is considerable research interest in all of these areas. The following sections

review current literature in these areas as it pertains to the proposed research.

Feature Engineering

Feature engineering grew out of the need to transform linear regression inputs that

are not normally distributed (Freeman & Tukey, 1950). Such transformation is necessary

because linear regression assumes normally distributed input. The seminal work on

automated feature engineering was introduced by Box and Cox (1964) and showed a

method for determining which of several power functions might be a useful feature

transformation for the inputs to linear regression. Power transformations simply apply

exponents to the input features of a machine-learning model. Other mathematical

functions may also be used for transformation with logarithms being one popular choice.

Linear regression is not the only machine-learning model that benefits from feature

engineering transformations. These simple transformations simply modify the individual

features independently of each other.

The method proposed by Box and Cox (1964) relied upon a stochastic sampling of

the data and does not necessarily guarantee an optimal set of transformations. Breiman

and Friedman (1985) introduced the ACE algorithm that could guarantee optimal

transformations for linear regression. The ACE algorithm finds a set of optimal

transformations for each of the predictor features, as well as the outcome to be used with

linear regression. Though the resulting transformations were originally intended for

linear regression, they have been used for other model types as well (B. Cheng &

Titterington, 1994).

14

Splines are a common means of feature transformation for most machine learning

model types. By fitting a spline to individual features, it is possible to smooth the data

and reduce overfitting. The number and position of knots inside of the spline is a hyper-

parameter that must be determined for this transformation technique. Splines have the

capability of taking on close approximations of the shape of many functions, such as log

and power functions. Brosse, Lek, and Dauba (1999) made use of splines to transform

data for a neural network to predict the distribution of fish populations.

Machine vision has been a popular application of feature engineering. A relatively

early form of feature engineering, for computer vision, was the Scale-Invariant Feature

Transform (SIFT) (Lowe, 1999). This transformation attempts to solve one of the biggest

problems in computer vision—image scaling. A machine learning model that learns to

recognize digits might not recognize these same digits if their size is doubled. SIFT

preprocesses the data and provides them in a form where images of multiple scales

produce features that are much the same. These types of features can be successfully

generalized for many problems and applications in machine vision, including object

recognition and panorama stitching (M. Brown & Lowe, 2003).

Text classification is another popular application of machine learning algorithms.

Scott and Matwin (1999) made use of feature engineering to enhance the performance of

rules learning for text classification. These transformations allow characteristics about the

text, such as structure and frequency to be generalized to just a few features.

Representing textual data to a machine learning model produces a considerable number

of dimensions. Feature engineering to reduce these dimensions is useful for text

classification.

15

Another application of feature engineering to text classification is the latent Dirichlet

allocation (LDA) engineered feature. This method transforms a corpus of documents into

document-topic mappings (Blei et al., 2003). LDA has subsequently been applied to

several document classification tasks, such as spam filtering (Bíró, Szabó, & Benczúr,

2008) and article recommendation (Wang & Blei, 2011).

Many data are stored in relational data base management systems (RDBMS). These

data are stored in a number of different tables that form links, or relations, between them.

The relationships between these tables can be of various cardinalities, leading to such

relationships as one-to-one, one-to-many or many-to-many. Machine learning models

typically require a fixed-length vector input size. Mapping these linked data into a

machine learning model can be difficult. Automated feature engineering of RDBMS data

is an active area of research. Bizer, Heath, and Berners-Lee (2009) created a system

where the data are structured such that it can be accessed with semantic queries. The field

of automated feature generation for linked data is an active area of research.

Feature engineering has proven successful in data science competitions, such as

Kaggle and KDD Cup. One early use of feature engineering for a competition was the

KDD Cup 2010 competition, that was won by a team that successfully applied feature

engineering and an ensemble of machine learning models (Yu et al., 2011). Other

features, such as histograms of oriented gradients were useful in this competition. W.

Cheng, Kasneci, Graepel, Stern, and Herbrich (2011) developed an automated feature

generation algorithm for data organized with domain-specific knowledge. Later, Ildefons

and Sugiyama (2013) were able to win the Kaggle Algorithmic Trading Challenge with

16

an ensemble of models and feature engineering. The features engineered for these

competitions were created by hand.

Natural language processing (NLP) has benefited greatly from feature engineering.

An example of an engineered feature for NLP is the term frequency inverse document

frequency (TF-IDF). This engineered feature is essentially the ratio of how frequently a

word shows up in a document to how often it shows up in the whole corpus of documents

(Rajaraman & Ullman, 2011). TF-IDF has proven popular for text mining, text

classification and NLP.

Machine learning algorithms themselves have been used to perform automated

feature learning. These algorithms are often unsupervised, as they are not provided an

expected outcome. Coates et al. (2011) used an unsupervised single layer ANN for

feature engineering. Dimension reduction algorithms, such as principal component

analysis (PCA) (Timmerman, 2003) and t-distributed stochastic neighbor embedding (T-

SNE) (Van der Maaten & Hinton, 2008) have also proven successful for automated

feature engineering in some cases. Other unsupervised machine learning algorithms have

also proven successful at feature engineering, Coates and Ng (2012) made use of K-

Means clustering for feature engineering.

Deep neural networks have many different layers to learn complex interactions in the

data. Despite this advanced learning capability, deep learning also benefits from feature

engineering. Bengio (2013) demonstrated that feature engineering is useful for several

classes of deep learning problem, such as: speech recognition, computer vision,

classification and signal processing. Le (2013) engineered high-level features using

unsupervised techniques to construct a deep neural network for signal processing.

17

Lloyd, Duvenaud, Grosse, Tenenbaum, and Ghahramani (2014) made use of feature

engineering to create the Automatic Statistician project. This system automatically

models regression problems and produces reports readable by humans. This system can

automatically determine the types of transformations that might benefit individual

features.

Kanter and Veeramachaneni (2015) invented a technique called deep feature

synthesis, that can be used to automatically transform relational database tables into the

feature vector needed by the typical machine learning model. The deep feature synthesis

makes use of SQL-like transformations, such as MIN, MAX, and COUNT to summarize

one-to-many and many-to-many relationships. The deep feature synthesis algorithm was

able to outperform the majority of competitors in three data science competitions.

Neural Networks

Neural networks are a loosely biologically-inspired class of algorithms that were

introduced by McCulloch and Pitts (1943) as networks made up of MP-Units. This

seminal algorithm specifies the calculation of a single neuron, called an MP-Unit, as the

weighted sum of the neuron’s inputs. This weighted sum is a mathematical dot product.

Nearly all neural networks created since their introduction in 1943 are based upon

feeding dot product calculations to transfer functions over layers of neurons. Deep neural

networks simply have more layers of neurons (MP-Units).

Initially, the weights of neural networks were handcrafted to create networks capable

of solving simple problems. There has been considerable research into automated means

of selecting weights for a neural network that achieve a particular objective. Hebb (1949)

defined a process to describe how the connection strengths between biological neurons

18

change as learning occurs. When the organism performs actions, connections between

the neurons necessary for that action increase. This process became Hebb’s rule, and is

often informally stated as, “neurons that fire together wire together.”

Rosenblatt (1962) introduced the perceptron that became the seminal neural network

that contained input and output layers. The perceptron is a two-layer neural network with

an input layer that contains weighted forward-only connections to an output layer. The

transfer function used by the perceptron is a simple function that performs a threshold—it

returns the value 1 if the neuron’s weighted inputs reach a value above a specified

threshold; and returns 0 otherwise. Severe limitations in the perceptron were described

by Minsky and Papert (1969) in their monograph. They demonstrated that perceptrons

were incapable of learning non-linearly separable problems, such as the exclusive or

(XOR) operator.

Research continued into a means of automatically determining the weights of a

neural network. What would become the backpropagation algorithm was introduced by

Werbos (1974) in his PhD thesis. Backpropagation is the seminal algorithm that forms

the basis for automatically determining neural network weights from data.

Backpropagation is based on gradient descent, which is a supervised training algorithm

where a series of observations are provided that specify the expected outcome for input

vectors to the neural network. This algorithm adjusts the weights by calculating the

partial derivatives of each weight for the loss function, with respect to the other weights.

These partial derivatives are called the gradients, and provide an indication of how to

change these weights to minimize the loss function. The difference between the neural

19

networks’ current and expected outputs is the loss function for a neural network. The

loss function of a neural network is often called its error function.

Gradient descent was first applied to neural networks by Rumelhart, Hinton, and

Williams (1985). Their algorithm is called the backward propagation of errors, or

backpropagation. The gradient of each weight is calculated and used to determine a

change that should occur in the weight for the current training epoch. The gradient of

each weight is essentially the partial derivative of the loss function for that weight with

all other weights held constant. Backpropagation is essentially the application of gradient

descent to neural network training.

Backpropagation was initially ineffective at training neural networks with

significantly more than two hidden layers. It was also not initially understood if neural

networks actually benefited from many layers. Gybenko (1989) formulated the universal

approximation theorem, proving that a single hidden-layer neural network could

approximate any function. This research was built upon by Hornik (1991), who proved

that it was not the specific choice of the transfer function, but rather the multilayer

feedforward architecture itself which gives neural networks the potential of being

universal approximators. The universal approximation theorem essentially implies that

because a single hidden-layer neural network can theoretically learn any problem,

additional hidden layers are unnecessary.

The inability to learn large numbers of hidden layers was not the only barrier to

widespread neural network adoption. One considerable obstacle to the adoption of neural

networks is the large number of hyper-parameters that a neural network contains. A

neural network practitioner must decide how many layers the network must have and

20

how many hidden neurons will be contained by each of these hidden layers. Automatic

determination of an optimal structure for neural networks is an ongoing area of research.

Stanley and Miikkulainen (2002) invented the NEAT neural network that makes use of a

genetic algorithm to optimize the neural network structure. The genetic algorithm

searches for the optimal neural network structure and weight values to minimize the loss

function.

Research continued on neural networks through the early 2000’s. Neural networks

were applied to a variety of tasks, such as time series prediction (Balkin & Ord, 2000).

Most training algorithms for neural networks were not effective at training more than two

layers. The ineffectiveness of training deep neural networks, combined with the

universal approximation theorem’s assertion that only one hidden layer is actually needed

led to a stagnation of research into neural networks deeper than a single hidden layer.

Deep Learning

While it is theoretically possible for a single-hidden layer neural network to learn

any problem (Hornik, 1991), this will not necessarily happen in practice. The additional

hidden layers can allow the neural networks to learn hierarchies of features. This can

simplify the search space and allow an optimal set of weights to be found with less

training. Unfortunately, there was no method to train these networks until a series of

innovations would make this training possible, and give rise to what is now referred to as

deep learning. The output of a deep neural network is still calculated by passing the

output of a dot product to a transfer function. The innovations, referred to as deep

learning, introduce new transfer functions and training methods. The seminal calculation,

given by Equation 1, introduced by McCulloch and Pitts (1943) remains intact.

21

The first successful application of a deep neural network was by Geoffrey E. Hinton

et al. (2006). They created a learning algorithm that could train deep variants of the type

of belief networks introduced by Fukushima (1980). This discovery renewed interest in

deep neural networks. Several additional technologies, such as stochastic gradient

descent, rectified linear units, and Nesterov momentum, have been introduced that have

made training of deep neural networks more efficient. Taken together, these technologies

are referred to as deep learning.

Prior to deep learning, most neural networks made use of a simple quadratic error

function on the output layer (Bishop, 1995). The cross entropy error function, introduced

by De Boer, Kroese, Mannor, and Rubinstein (2005) often achieves better results than the

simple quadratic. The cross entropy error function makes use of the logarithm function

and provides a more granular means of error representation than the quadratic error

function.

Neural networks must start with random weights. Often these neural networks are

initialized with random values within a range. One common choice for this range is the

real numbers between -1 and 1. Simple range initialization can occasionally produce a

set of weights that are difficult to train. There has been considerable research interest

into weight initialization algorithms that provide a good set of starting weights for

backpropagation (Nguyen & Widrow, 1990). Currently, the most popular weight

initialization method is the one introduced by Glorot and Bengio (2010) that is called the

Xaiver weight initialization algorithm. Xaiver weight initialization has since become a

popular initialization algorithm for deep neural networks. It is rare that Xaiver weight

22

initialization will produce a set of initial random weights that are impossible to be trained

by backpropagation.

Backpropagation relies on the derivatives of the transfer functions to propagate error

corrections from the output neurons back through the weights of a neural network.

Neural networks with many layers will often experience a problem where the gradients

become zero with certain transfer functions. This is referred to as the vanishing gradient

problem, and was first described by Hochreiter (1991) in his thesis. Prior to 2011, most

neural network hidden layers made use of a sigmoidal transfer function, such as the

hyperbolic tangent or the logistic transfer function. Both of these functions saturate to

zero as x approaches either positive or negative infinity—this causes these transfer

functions to exhibit the vanishing gradient problem. To alleviate this problem, Glorot,

Bordes, and Bengio (2011) introduced the rectified linear unit (ReLU) transfer function.

The ReLU transfer function usually achieves much better training results for deep

neural networks than the sigmoidal transfer functions more traditionally used. According

to current research (Bastien et al., 2012), the type of transfer function to use for deep

neural networks is well defined for each layer type. For their hidden layers, deep neural

networks use the ReLU transfer function. For their output layer, most deep neural

networks make use of linear transfer function for regression, and a softmax transfer

function for classification. No transfer function is needed for the input layer.

Overfitting is a frequent problem for neural networks (Masters, 1993). A neural

network is said to be overfit when it has been trained to the point that the network begins

to learn even the outliers in the dataset—such a neural network is learning to memorize,

not generalize (Russell & Norvig, 1995). Algorithms designed to combat overfitting are

23

called regularization algorithms. Dropout was introduced by Srivastava, Hinton,

Krizhevsky, Sutskever, and Salakhutdinov (2014) as a simple regularization technique for

deep neural networks.

Another significant innovation that benefits deep learning is Nesterov momentum

(Sutskever, Martens, Dahl, & Hinton, 2013). Momentum has been an important

component of backpropagation training for some time. Simple momentum is a

regularization technique that was originally introduced for gradient ascent by Polyak

(1964). Momentum backpropagation simply adds a portion of the previous iteration’s

weight change to the current iteration’s weight change. This effectively gives the weight

changes the necessary momentum to continue through local minima and continue the

descent to better loss function result levels. Nesterov momentum (Nesterov, 1983) further

enhances the momentum calculation and increases the effectiveness of stochastic gradient

descent (SGD). The SGD algorithm works by selecting mini-batches at each iteration for

training that are randomly sampled from the training data. Nesterov momentum

decreases the likelihood of a particularly bad mini-batch from changing the weights into

too poor of a state.

Evolutionary Programming

Evolutionary algorithms were introduced by Holland (1975). Later Deb (2001)

extended this work to introduce genetic algorithms as, “a generic population-based

metaheuristic technique used to find solutions to many real-world search and

optimization problems.” These algorithms are inspired by Darwinian evolution. A

population of potential solutions is evolved as the fittest population members produce

subsequent generations through the genetic operators of crossover and mutation. Each of

24

these potential solutions is referred to as either a genome or a chromosome (depending on

the implementation). This evolutionary process is essentially a search with the classic

balance between exploitation and exploration. Mutation and crossover provide the

genetic algorithm with the ability to explore and exploit the search space. The mutation

genetic operator provides exploration by introducing randomness to the population,

whereas the crossover genetic operator exploits by creating new members containing

traits from the best members of the population (Holland, 1975).

One of the most commonly used evolutionary algorithms are the type of genetic

algorithm introduced by Holland (1975). This algorithm represents potential solutions as

fixed-length vectors that represent some abstraction of the solution to a problem. This

vector might represent the weights of a neural network, coefficients of an equation, or

any other fixed-length vector that must be optimized against an objective function.

Mutation is accomplished by perturbing the elements of a vector in some way. Crossover

is accomplished by splicing together the vectors of two or more parent vectors.

The population is evaluated using an objective function. The loss function of a

neural network is somewhat similar to the evolutionary algorithm’s objective function.

Both the loss function and objective function provide a numeric value that is to be

minimized. Some evolutionary algorithms also allow the objective function to be

maximized. The choice between minimization and maximization is dependent on the

domain of the problem. Though the loss function and objective function both accomplish

similar goals, it is convention to refer to the evaluation function for an evolutionary

algorithm as an objective function.

25

While many problems can be modeled as a fixed-length vector, this representation is

a limiting factor of classic genetic algorithms. While a genetic algorithm that is evolving

the weights of a neural network might produce better weights, it will never produce an

improvement to the underlying neural network algorithm. To evolve better algorithms

the computer programs themselves must become the genomes that will be evolved (Poli,

Langdon, & McPhee, 2008). Genetic programming was created to evolve the computer

programs themselves and overcome the limiting fixed-length vector of classic genetic

algorithms.

Genetic programming evolves representations of actual computer programs to

achieve an optimal score to a loss function. This active area of research was popularized

by Koza (1992) as a means of automatically generating programs to solve specific

problems. The majority of Koza’s research represents the genetic programs as trees.

Though the vast majority of genetic programming research has revolved around the tree

representation, there is substantial research into other representations of the genetic

programs (Wolfgang Banzhaf, Francone, Keller, & Nordin, 1998).

A tree-based genetic program is implemented as a directed acyclic graph (DAG).

The tree is made up of connected nodes. The tree starts with a parentless root node, the

root node connects to other nodes that, in turn, point to more nodes. The tree is made up

of interior nodes that have at least one child. There are also leaf nodes that have no

children. Ultimately the tree reaches all of the terminal nodes (Wolfgang Banzhaf et al.,

1998). The terminal nodes represent variables and constants. The interior nodes make up

the operators that use these variables and constants. Equation 2 could be represented as a

tree for genetic programming.

26

𝑥

2
− 1 + 2cos⁡(𝑦)

Equation 2. Equation for genetic programming

It is common in computer science to represent such equations as trees. Early

programming languages, such as Lisp and Scheme made extensive use of similar tree

representations, called S-Expressions (Sussman, Abelson, & Sussman, 1983). Equation 2

represented as a tree is given by Figure 3.

Figure 3. Equation tree for genetic programming

It is also possible to express entire computer programs as trees. The branching

nature of a tree can encode if-statements and loops. The programs encoded into such

trees can be Turing complete (Turing, 1936), which means they can theoretically

compute anything. Additionally, nodes can be created that allow the values of variables

to be changed. Trees are not the only representation of genetic programs. Much of the

research into genetic programming has been to determine the best way to represent the

genetic programs (Poli et al., 2008).

27

Modern computers represent computer programs as a series of linear instructions

(Knuth, 1997), not as trees. Though these programs can be written as trees, it is often not

practical, as the linear nature of programming will often create deep unbalanced trees.

This problem led a number of researchers to investigate a linear representation of the

genetic programs Poli et al. (2008). Wolfgang Banzhaf (1993), Perkis (1994), and

Diplock (1998) sought to implement genetic programing in a linear fashion that mirrored

the linear computer architecture. P. Nordin (1994), Peter Nordin, Banzhaf, and Francone

(1999), Crepeau (1995), and Julian F Miller and Thomson (2000) all went even further

and evolved bit patterns that represented the actual CPU machine language instruction

codes. The code created by the linear genetic programming systems closely resembles

pseudo-code. This makes linear genetic programs easier for a human programmer to

interpret than a tree-based genetic program.

Cartesian Genetic Programming (CGP) represents the evolvable genetic programs as

two-dimensional grids of nodes (Julian Francis Miller & Harding, 2008). CGP easily

encodes computer programs, electronic circuits, neural networks, mathematical equations

and other computational structures. These integer-based grids are represented as fixed-

length vectors for the crossover and mutation genetic operators.

A grid, of a fixed size, is used to encode a CGP. In many ways, the encoded CGP

resembles the sort of breadboard normally used in electronics. This grid has rows that are

equal to the size of the feature vector used with a CGP algorithm. The number of

columns is variable, but defines the complexity of the equations, or programs, that can be

represented. In this way the number of columns is analogous to the number of hidden

28

neurons in an artificial neural network. A simple CGP grid, with two input variables (x

and y) and one output is shown in Figure 4.

Figure 4. Cartesian genetic program (CGP)

A genome, using the above matrix representation, might be encoded as:

0 1 2 0 1 1 2 3 2 0 1 1 5

Grouping the genes in this genome, by operator, would result in:

[0 1 2] [0 1 1] [2 3 2] [0 1 1] [5]

The first four bracketed numbers encode OPP1 through OPP4. The first number in

each of these three-value tuples provides the operator. For this example, the following

operators are used:

• 0 represents addition.

• 1 represents subtraction.

• 2 represents multiplication.

• 3 represents division.

The first tuple requests that connections are added to indexes 1 and 2, yielding x+y.

The final tuple, which contains only 5, specifies that index 5 is the output. In this case

29

the output is the output of index 5, which is OPP3. If every connection in the above

genome were plotted, this would result in Figure 5.

Figure 5. Cartesian genetic program (CGP) links

The above genome results in Equation 3.

𝑦(𝑦 + 𝑥)

Equation 3. Equation for Cartesian genetic program

Of course, the above equation can be algebraically simplified; however, genetic

programming typically does not perform this simplification. Another important concept

is that much of the genome is not used. Only the parts of the genome that contain

connections to the output are actually used. The genes that do not contribute to the

output are called non-coding genes, which is a reference to biological genes that do not

code protein. Additionally, inputs can also be non-coding. If the evolutionary process

does not find one of the input features to be valuable, that feature will not be coded into

the final program. This allows CGP to perform feature selection for dimensionality

reduction (Mladenić, 2006) as an inherent part of its process. Feature selection must be

performed as a separate step for many other machine learning algorithms.

30

Genetic programming has been applied to intrusion detection systems (IDS). Mabu,

Chen, Nannan, Shimada, and Hirasawa (2011) made use of tree-based genetic

programming to automatically generate rules for IDS. Using the KDD99 dataset and the

DARPA98 databases from MIT Lincoln Laboratory, the researchers were able to evolve

an effective set of IDS rules. The researchers noted that the tree structure of genetic

programming was more effective than the fixed-length vector typically used in traditional

genetic algorithm systems.

Many genetic programs operate on a single type of data—often floating point.

However, computer programs often make use of many different data types. It would be

useful to offer this same flexibility to genetic programs. Data types such as integer,

string and struct could be useful to genetic programs. This complicates genetic

programming. Not every operator can accept all types. For example, the “-” operator can

easily be applied to integers and floating point numbers, but is undefined for strings or

Booleans. To overcome this limitation, Worm and Chiu (2013) made use of a system of

grammar rules. The grammar rules document what operators are depended on what type

of data. These rules restrict the crossover and mutation operators and ensure that new

programs are valid.

The research for this dissertation proposal covers a number of areas of literature,

including: neural networks, deep learning, and genetic programming. Recent research in

each of these areas was covered in the preceding sections. The proposed research seeks

to use the latest advances in all of these areas to produce an algorithm to generate features

for deep neural networks.

31

Approach

The proposed research is to create an algorithm capable of the automated creation of

engineered features that would benefit a deep neural network. Unlike much of the

previous feature engineering research, these engineered features are allowed to draw

upon multiple original features. This problem can essentially be thought of as an infinite

search over all combinations of the original feature set. The algorithm will see which

combinations enhance the learning of the deep neural network. Obviously, such an

approach is not possible. However, rather than try every possible combination of original

features, a metaheuristic search algorithm would be used. Because the search space is

potential equations, genetic programming is a natural choice of metaheuristic. Other

metaheuristic search algorithms, such as simulated annealing, Nelder-Mead (Nelder &

Mead, 1965), particle swarm optimization (PSO) (Kennedy, 2010), or ant colony

optimization (ACO) (Colorni, Dorigo, & Maniezzo, 1991) might also be used in

conjunction with the genetic programming. However, the primary research direction for

this proposed research should be genetic programming.

Narrowing the Search Domain

It is possible to place search constraints upon a genetic programming algorithm

(Gruau, 1996; Janikow, 1996). Such constraints are sometimes implemented as an

additional objective, producing a multi-objective genetic program. The primary objective

remains achieving a favorable score from the deep learning loss function; however, the

secondary objective severely penalizes equations of the type that should not be explored.

In prior research the author determined that deep neural networks are not benefited by

certain classes of function (Heaton, 2016), such as simple power functions, ratios,

32

differences and counts. This research would be expanded upon to determine additional

useful equation structures for deep learning. Only features that follow these structures

would be engineered.

Genetic programming requires a palette of operators to construct equations from.

The selection of such operators is critical to a good solution. For example, some

problems may benefit from adding the trigonometry functions. However, for other

problems the trigonometry functions might be superfluous. Additionally, sometimes

problem specific functions are added to the operator set for genetic programming. For

this research the operator palette will be kept small; however, some functions that are

specific to feature engineering will be added. The following palette operators are initially

planned:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Mean of Column/Feature

• Standard Deviation of Column/Feature

• T-SNE Distance to Centroid of Each Class

The final operator described above uses the dimensional reduction algorithm T-SNE

(Van der Maaten & Hinton, 2008) to reduce the dimensions of the feature vector to 3 and

calculates the distance between the feature vector for the current dataset item and the

centroid of each class in a classification problem. If the dataset is not used for

33

classification, then this operator will not be available. In addition to the above operators,

others may be added as this research is conducted.

Neural networks are calculated by applying a weighted sum to each neuron, as

demonstrated by Equation 1. If this equation is examined, it can be seen that neural

networks inherently have the ability to multiply and sum. Because of this, neural

networks do not tend to benefit as much from engineered features involving simple

multiplication and addition (Heaton, 2016). Because of this, it might not be worth the

time to discover an engineered feature as complex as Equation 4.

𝑓𝑒 =
3𝑓1𝑓2
2𝑓3

Equation 4. First engineered feature

In the above equation, an engineered feature (fe) was calculated making use of 3 of

the original features. Because neural networks can perform their own multiplication, it

might be possible to simplify Equation 4 to Equation 5.

𝑓𝑒 =
𝑓1𝑓2
𝑓3

Equation 5. Second engineered feature

The feature engineered by Equation 4 is not mathematically equivalent to Equation

5; however, Equation 5 might be sufficient. This is because the neural network would

have the ability to multiply 3/2 by the engineered feature. Because the proposed research

is targeted at deep learning, it is important to not engineer parts of the feature that the

neural network can easily learn during training.

34

Creating an Efficient Objective Function

The genetic programming algorithm used in this research will need an objective

function to guide the genetic selection operator. This research will use a multi-objective

function (Deb, 2001) that will balance between finding effective engineered features and

avoiding engineered features that are known to be ineffective for deep neural networks.

The first objective is to evaluate the usefulness of engineered features. To do this, a

control neural network will first be trained with only the original features present.

Training of the control neural network will only need to be performed one time, at the

start of training. To evaluate a potential engineered feature, it will be added to the feature

vector and a new neural network trained. The difference between the control neural

network’s loss function and the engineered neural network’s loss function will become

the score returned by the objective function. Scores above zero do not improve the neural

network’s predictive power; whereas, scores below zero improved the neural network.

The genetic programming algorithm will seek to decrease these scores.

It will be critical to optimize the computational performance of the loss function.

There are numerous opportunities to optimize this function. One potential optimization is

to decrease the size of the deep neural network and number of training iterations. This

will decrease training effectiveness. However, as long as both the control and test neural

network receive equal treatment, the results should indicate if the engineered features are

improving the neural network loss function result. It is important to remember that the

goal of the objective function is not to fully train the neural network, but rather to gain

some indication of how effective the engineered features are. Other novel techniques will

be evaluated to produce an objective function with acceptable performance.

35

The second objective will be to avoid the equations that are known to not improve a

deep neural network’s effectiveness. The author performed preliminary research and

determined several feature classes that were not particularly helpful to deep neural

networks (Heaton, 2016). From the author’s prior research it was determined that counts,

differences, logs, power functions, rational polynomials, and radicals were not

particularly effective engineered features for deep learning. Similarly, our research

showed that deep neural networks benefited from polynomial, ratio, and rational

difference features. Engineered features that resemble polynomial, ratio, and rational

difference will receive a score bonus.

Generating Candidate Datasets

Not all datasets will benefit from engineered features. This is true if the underlying

data do not contain relationships that can be exposed by feature engineering. Because of

this, it will be necessary to create datasets that are designed to benefit from features that

are known to be useful to deep neural networks. The feature engineering algorithm

proposed by this research will be tested to see if it is capable of finding the engineered

features that are known to help these generated datasets.

Datasets will be generated that contain outcomes that are designed to benefit from

feature engineering of varying degrees of complexity. It is necessary to choose

engineered features that the deep neural networks cannot easily learn for themselves. The

goal is to engineer features that help the deep neural network—not features that would

have been trivial for the network to learn on its own. In previous research the author

devised a simple means to learn the types of features that benefit a particular machine

learning model type, such as a deep neural network. The author simply generated

36

training sets where the expected output was the output of the engineered feature. If the

model can learn to synthesize the output of the engineered feature, then adding this

feature will not benefit the neural network. This is similar to the common neural network

example of teaching a neural network to become an XOR operator. Because neural

networks can easily learn to perform as XOR operators the XOR operation between any

two original features would not make a useful engineered feature.

Figure 6, from Heaton (2016), shows the effectiveness of a deep neural network

learning to synthesize several types of engineered feature. The x-axis lists the types of

engineered feature and the y-axis shows the root mean square error (RMSE) loss function

result achieved while trying to synthesize the feature. Errors are capped at 0.05, if the

RMSE error is above that level then the model is assumed to have failed.

37

Figure 6. Engineered features for deep learning. Reprinted from An Empirical
Analysis of Feature Engineering for Predictive Modeling (p.3), by J. Heaton.
Copyright 2016 by IEEE. Reprinted with permission.

The proposed research will make use of the RMSE and multi log-loss error

functions. RMSE will be used for all regression problems and multi log-loss will be used

for classification. RMSE (McKinney, 2012) is given in Equation 6 and multi log-loss is

given in Equation 7.

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂ − 𝑦𝑖)2
𝑛‖𝑦‖

𝑖=1

‖𝑦‖𝑁

Equation 6. Root mean square error (RMSE)

38

𝑀𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = −
1

𝑁
∑∑𝑦𝑖,𝑗log⁡(𝑦̂𝑖,𝑗)

‖𝑦‖

𝑗=1

𝑁

𝑖=1

Equation 7. Multi log loss

For both equations, N represents the number of training set elements. The vector y-

hat represents the output vector from the neural network, and the vector y represents the

expected output from the neural network.

Finding Candidate Real-World Datasets

Ultimately, the utility of this research will be determined by the ability of the

developed algorithm to find useful engineered features in real world datasets. Several

datasets from the University of California Irvine (UCI) machine learning repository will

be used. Datasets that have the following attributes will be favored:

• No image or audio datasets

• At least 10 numeric (continuous) features

• Features should be named, such as measurements, money or counts

The following five datasets appear to be good candidates for this research:

• Adult dataset

• Wine dataset

• Car evaluation dataset

• Wine quality dataset

• Forest fires

Other UCI datasets will be considered, as needed, for this research.

39

Milestones

This section details plans to complete the research in a timely manner. The

following table shows how the research is broken into a total of 7 tasks to be

accomplished over 21 weeks.

Description Duration

1 Setup necessary environments: install deep learning

packages, obtain datasets.

1 week

2. Write software to generate test datasets for feature

engineering.

1 week

3. Create a deep neural network objective function

that will evaluate an engineered feature.

1 week

4. Create initial genetic programming algorithm

capable of engineering features.

1 week

5. Begin experimentation iterations on generated

datasets. Three iterations are planned. Each iteration

consists of:

• Plan features to engineer

• Create test dataset

• Test genetic programming algorithm

• Evaluate results, see what engineered

features found

6 weeks total

(3 weeks/iteration)

6. Begin experimentation iterations on real-world

datasets

5 weeks total

(1 week/dataset)

40

7. Write final report 6 weeks total

Table 1. Project schedule

These times are only estimates. Some adjustments will likely be necessary as the

project progresses. Figure 7 shows the project flowchart. The two iteration cycles, for

generated and real-world data are shown as the two loops. The following sections

describe each of these tasks in greater detail.

41

Figure 7. Project flowchart

42

Project Setup and Creation of Objective Function

The objective function is critical for any project that makes use of an evolutionary

algorithm. The objective function will be created in the Java programming language

(Arnold, Gosling, & Holmes, 1996). The objective function will be tested using the same

datasets as used by Heaton (2016) and should obtain the same RMSE values as the paper.

Some analysis will be performed on the minimal complexity and training iterations

needed to replicate the results of the paper. The objective function should execute within

10-30 seconds on a single core for it to be effective. A 30 second objective function,

with a population size of 1,000, would take approximately (30*1000)/8 = 3,750 (a little

over an hour) seconds to execute a single epoch on an 8 core machine. These tasks are

estimated at three weeks total, one week to setup environments, one week to create test

data, and an additional week to build the objective function.

Setup Genetic Program

This research will make use of the genetic programming algorithms provided by the

Encog Machine Learning Framework (Heaton, 2015). Encog contains an advanced

genetic programming algorithm that the author developed as prior research to this

dissertation. Several palettes will be created that provide the necessary operators to be

used for the engineered features. The previously discussed multi-objective function will

be created to score engineered features both on their conformance to the desired equation

profile, as well as ability to achieve a better loss function result than the control neural

network.

Setting up the genetic programming environment might normally take more time

than scheduled above. However, the author has extensive experience with the Encog

43

framework and has helped many in the open source community to adapt problems Encog-

based programs to genetic programming. This task is estimated at one week.

Experiment with Generated Data

Once the genetic programming and deep learning framework is in place,

experimentation must be performed with generated data. Datasets will be created where

the outcome is closely correlated to an engineered feature. The algorithm created in tasks

3&4 will be tested with these datasets to see if the proposed algorithm can discover the

underlying engineered feature. These iterations are a sort of sanity check to make sure

that the proposed algorithm is capable of finding engineered features that are known to

exist and are useful. The operator palette and genetic programming algorithm training

parameters will be adjusted at this point to achieve better results.

This round of experiments will be iterative. Each iteration will try a batch of

generated data designed to find a variety of features. Data will be generated using simple

prototype scripts written in the Python programming language (Van Rossum, 1995).

During each iteration the performance of the objective function will be improved. Each

iteration is planned to take two weeks, and a total of three iterations are planned. This

portion of the research will take six weeks in total.

Experiment with Actual Data

The success of an automatic feature engineering algorithm will ultimately be

measured by its success in the generation of actual features for a real-world dataset. The

proposed algorithm developed in the previous iterations will be tested on at least 5

datasets from the UCI Machine Learning Repository (Newman & Merz, 1998). Further

44

adjustments will likely be made to the proposed algorithm as it is executed against the

real-world data. Considerable computation time will likely be needed to sufficiently

explore the search space. Additional time will be needed to prepare the datasets for

prediction by a neural network. The author has considerable experience preparing

datasets for predictive modeling. It is estimated that a week will be needed per dataset.

The goal is to evaluate 5 datasets, requiring a total of 5 weeks to complete this task.

Write Final Report

The final dissertation report will be drafted and updated as the tasks progress.

However, it will be necessary to spend time editing, finalizing, and tweaking the ultimate

dissertation report. This task will include preparing the source code, tables, graphs and

other supporting elements of the final dissertation report. The estimated timeframe for

this task is approximately 6 weeks.

After completion of this project the author plans to refine the final dissertation report

and submit it as an academic paper to a journal or conference. At this point the source

code necessary to reproduce this research will be placed on the author’s GitHub

(http://www.github.com/jeffheaton) repository. For reasons of confidentiality, the source

code will not be publicly distributed prior to formal publication.

Resources

The hardware and software components necessary for this research are all standard

and readily available common off-the-shelf personal computer system components and

software. The author has access to two quadcore Intel I7 Broadwell equipped machines

with 16 gigabytes of RAM each. These systems will be used to perform the majority of

http://www.github.com/jeffheaton

45

computations needed to support this research. If additional processing power is required

the author will make use of Amazon AWS virtual machines.

The Java programming language (Arnold et al., 1996) will be used to implement the

code necessary to complete this research. The Java 8 version (JDK 1.8) will be used. In

addition, Python 3.4 (Van Rossum, 1995) will be used in conjunction with Scipy (Jones,

Oliphant, Peterson, & al., 2001), scikit-learn (Pedregosa et al., 2011), Theano (Bastien et

al., 2012; Bergstra et al., 2010) and Lasange (Dieleman et al., 2015) for deep learning.

The Python machine learning packages will be useful to compare select neural networks

and feature combinations with the Encog library.

Encog version 3.3 (Heaton, 2015) will be used for the deep learning and genetic

programming portions of this research. Encog provides extensive support for both deep

learning and genetic programming. Additionally, Encog is available for both the Java

and C# platforms. The author of this research has written much of the code behind

Encog and has extensive experience with the Encog framework.

The required equipment is currently available to the author without restrictions. If

additional hardware is needed, it can be acquired within a reasonable time to continue the

research process. In the event of hardware failure, all equipment is readily available from

multiple online sources for replacement within a week. All required software is currently

available for the execution of this research and the programming components have

already been acquired. In the event of problems with the current software or catastrophic

system failure of the system the application development software is available for

reacquisition from the original sources online.

46

Both the vendor and online community provide support for the programming

environment in the event there are issues with the software or implementation of the

various components. There is currently no anticipated need to perform interaction with

end users, study participants or prior testing data because of the type of research project.

There are no anticipated costs for hardware or software beyond Amazon AWS fees. If

any Amazon AWS fees are incurred, the author will pay them. The author has a budget

set aside to acquire additional and/or replacement hardware, software and processing

fees. There will be no financial costs to Nova Southeastern University for this project.

References

Anscombe, F. J., & Tukey, J. W. (1963). The examination and analysis of residuals.

Technometrics, 5(2), 141-160.

Arnold, K., Gosling, J., & Holmes, D. (1996). The Java programming language (Vol. 2):

Addison-wesley Reading.

Balkin, S. D., & Ord, J. K. (2000). Automatic neural network modeling for univariate

time series. International Journal of Forecasting, 16(4), 509-515.

Banzhaf, W. (1993). Genetic programming for pedestrians. Paper presented at the

Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-

93, University of Illinois at Urbana-Champaign.

Banzhaf, W., Francone, F. D., Keller, R. E., & Nordin, P. (1998). Genetic programming:

an introduction: on the automatic evolution of computer programs and its

applications: Morgan Kaufmann Publishers Inc.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., . . .

Bengio, Y. (2012). Theano: new features and speed improvements. arXiv preprint

arXiv:1211.5590.

Bellman, R. (1957). Dynamic Programming. Princeton, NJ, USA: Princeton University

Press.

47

Bengio, Y. (2013). Representation learning: a review and new perspectives. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., . . .

Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. Paper

presented at the Proceedings of the Python for Scientific Computing Conference

(SciPy).

Bíró, I., Szabó, J., & Benczúr, A. A. (2008). Latent Dirichlet allocation in web spam

filtering. Paper presented at the Proceedings of the 4th international workshop on

Adversarial information retrieval on the web.

Bishop, C. M. (1995). Neural networks for pattern recognition: Oxford University Press.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic

Services, Interoperability and Web Applications: Emerging Concepts, 205-227.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of

Machine Learning Research, 3, 993-1022.

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal

Statistical Society. Series B (Methodological), 26(2), pp. 211-252.

Breiman, L., & Friedman, J. H. (1985). Estimating optimal transformations for multiple

regression and correlation. Journal of the American Statistical Association,

80(391), 580-598.

Brosse, S., Lek, S., & Dauba, F. (1999). Predicting fish distribution in a mesotrophic lake

by hydroacoustic survey and artificial neural networks. Limnology and

Oceanography, 44(5), 1293-1303.

Brown, B. F. (1998). Life and health insurance underwriting: Life Office Management

Association.

Brown, M., & Lowe, D. G. (2003). Recognising panoramas. Paper presented at the

ICCV.

Cheng, B., & Titterington, D. M. (1994). Neural networks: a review from a statistical

perspective. Statistical science, 2-30.

Cheng, W., Kasneci, G., Graepel, T., Stern, D., & Herbrich, R. (2011). Automated feature

generation from structured knowledge. Paper presented at the Proceedings of the

48

20th ACM International Conference on Information and Knowledge

Management.

Coates, A., Lee, H., & Ng, A. Y. (2011). An analysis of single-layer networks in

unsupervised feature learning. Paper presented at the Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics.

Coates, A., & Ng, A. Y. (2012). Learning feature representations with k-means Neural

Networks: Tricks of the Trade (pp. 561-580): Springer.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant

colonies. Paper presented at the Proceedings of the First European Conference on

Artificial Life.

Crepeau, R. L. (1995). Genetic evolution of machine language software. Paper presented

at the Proceedings of the Workshop on Genetic Programming: From Theory to

Real-World Applications, Tahoe City, California, USA.

De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the

cross-entropy method. Annals of operations research, 134(1), 19-67.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms: John Wiley

& Sons, Inc.

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby, S. K., Nouri, D., . . . Heilman,

M. (2015). Lasagne: first release.

Diplock, G. (1998). Building new spatial interaction models by using genetic

programming and a supercomputer. Environment and Planning, 30(10), 1893-

1904.

Freeman, M. F., & Tukey, J. W. (1950). Transformations related to the angular and the

square root. The Annals of Mathematical Statistics, 607-611.

Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

cybernetics, 36(4), 193-202.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. Paper presented at the International Conference on

Artificial Intelligence and Atatistics.

49

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks.

Paper presented at the International Conference on Artificial Intelligence and

Statistics.

Gruau, F. (1996). On using syntactic constraints with genetic programming. Paper

presented at the Advances in Genetic Programming.

Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2008). Feature extraction:

foundations and applications (Vol. 207): Springer.

Gybenko, G. (1989). Approximation by superposition of sigmoidal functions.

Mathematics of Control, Signals and Systems, 2(4), 303-314.

Heaton, J. (2015). Encog: library of interchangeable machine learning models for java

and c#. Journal of Machine Learning Research, 16, 1243-1247.

Heaton, J. (2016). An empirical analysis of feature engineering for predictive modeling.

Paper presented at the IEEE Southeastcon 2016, Norfolk, VA.

Hebb, D. O. (1949). The organization of behavior: New York: Wiley.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep

belief nets. Neural Computing, 18(7), 1527-1554.

doi:10.1162/neco.2006.18.7.1527

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504-507.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma,

Technische Universität München.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence.

University of Michigan Press.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.

Neural networks, 4(2), 251-257.

Ildefons, M. D. A., & Sugiyama, M. (2013). Winning the Kaggle Algorithmic Trading

Challenge with the Composition of Many Models and Feature Engineering.

IEICE transactions on information and systems, 96(3), 742-745.

50

Janikow, C. Z. (1996). A methodology for processing problem constraints in genetic

programming. Computers & Mathematics with Applications, 32(8), 97-113.

Jones, E., Oliphant, T., Peterson, P., & al., e. (2001). SciPy: open source scientific tools

for Python. Retrieved from http://www.scipy.org/

Kanter, J. M., & Veeramachaneni, K. (2015). Deep feature synthesis: towards

automating data science endeavors. Paper presented at the IEEE International

Conference on Data Science and Advanced Analytics (DSAA), 2015. 36678

2015. .

Kennedy, J. (2010). Particle swarm optimization Encyclopedia of Machine Learning (pp.

760-766): Springer.

Knuth, D. E. (1997). The art of computer programming, volume 1 (3rd ed.): fundamental

algorithms: Addison Wesley Longman Publishing Co., Inc.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of

natural selection: MIT Press.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer.

Le, Q. V. (2013). Building high-level features using large scale unsupervised learning.

Paper presented at the Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on Acoustics.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2014).

Automatic construction and natural-language description of nonparametric

regression models. arXiv preprint arXiv:1402.4304.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Paper

presented at the The Proceedings of the Seventh IEEE International Conference

on Computer Vision, 1999.

Mabu, S., Chen, C., Nannan, L., Shimada, K., & Hirasawa, K. (2011). An intrusion-

detection model based on fuzzy class-association-rule mining using genetic

network programming. Transactions on. System Management and Cybernetics,

Part C, 41(1), 130-139.

Masters, T. (1993). Practical neural network recipes in C++: Morgan Kaufmann.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

http://www.scipy.org/

51

McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy,

and IPython: O'Reilly Media, Inc.

Miller, J. F., & Harding, S. L. (2008). Cartesian genetic programming. Paper presented at

the Proceedings of the 10th Annual Conference Companion on Genetic and

Evolutionary Computation, Atlanta, GA, USA.

Miller, J. F., & Thomson, P. (2000). Cartesian genetic programming Lecture Notes in

Computer Science (Vol. 1802, pp. 121-132): Springer.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. an introduction to computational

geometry. Science, 165(3895).

Mladenić, D. (2006). Feature selection for dimensionality reduction. Paper presented at

the Proceedings of the 2005 International Conference on Subspace, Latent

Structure and Feature Selection, Bohinj, Slovenia.

Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression: a second course in

statistics. Addison-Wesley Series in Behavioral Science: Quantitative Methods.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The

computer journal, 7(4), 308-313.

Nesterov, Y. (1983). A method of solving a convex programming problem with

convergence rate O (1/k2). Paper presented at the Soviet Mathematics Doklady.

Newman, C. L. B. D. J., & Merz, C. J. (1998). UCI Repository of machine learning

databases.

Nguyen, D. H., & Widrow, B. (1990). Neural networks for self-learning control systems.

Control Systems Magazine, IEEE, 10(3), 18-23.

Nordin, P. (1994). A compiling genetic programming system that directly manipulates

the machine code. In K. E. Kinnear, Jr. (Ed.), Advances in Genetic Programming

(pp. 311-331): MIT Press.

Nordin, P., Banzhaf, W., & Francone, F. D. (1999). Efficient evolution of machine code

for CISC architectures using instruction blocks and homologous crossover. In L.

Spector, W. B. Langdon, U.-M. O'Reilly, & P. J. Angeline (Eds.), Advances in

Genetic Programming (Vol. 3, pp. 275--299). Cambridge, MA, USA: MIT Press.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature, 381, 607--609.

52

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .

Dubourg, V. (2011). Scikit-learn: Machine learning in Python. The Journal of

Machine Learning Research, 12, 2825-2830.

Perkis, T. (1994). Stack-Based Genetic Programming. Paper presented at the

International Conference on Evolutionary Computation.

Poli, R., Langdon, W. B., & McPhee, N. F. (2008). A Field Guide to Genetic

Programming: Lulu Enterprises, UK Ltd.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration

methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1-

17.

Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets: Cambridge

University Press.

Rosenblatt, F. (1962). Principles of neurodynamics.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal

representations by error propagation. Retrieved from

Russell, S., & Norvig, P. (1995). Artificial intelligence: a modern approach.

Scott, S., & Matwin, S. (1999). Feature engineering for text classification. Paper

presented at the ICML.

Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in neural

information processing systems, 9, 155-161.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. The Journal

of Machine Learning Research, 15(1), 1929-1958.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through

augmenting topologies. Evolutionary computation, 10(2), 99-127.

Stigler, S. M. (1986). The history of statistics: the measurement of uncertainty before

1900: Belknap Press of Harvard University Press.

Sussman, G., Abelson, H., & Sussman, J. (1983). Structure and interpretation of

computer programs: MIT Press, Cambridge, Mass.

53

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of

initialization and momentum in deep learning. Paper presented at the Proceedings

of the 30th International Conference on Machine Learning (ICML-13).

Timmerman, M. E. (2003). Principal component analysis (2nd Ed.). I. T. Jolliffe. Journal

of the American Statistical Association, 98, 1082-1083.

Tukey, J. W., Laurner, J., & Siegel, A. (1982). The use of smelting in guiding re-

expression Modern Data Analysis (pp. 83-102): Academic Press New York.

Turing, A. M. (1936). On computable numbers, with an application to the

Entscheidungsproblem. Journal of Math, 58(345-363), 5.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of

Machine Learning Research, 9(2579-2605), 85.

Van Rossum, G. (1995). Python tutorial, May 1995. CWI Report CS-R9526.

Wang, C., & Blei, D. M. (2011). Collaborative topic modeling for recommending

scientific articles. Paper presented at the Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.

Werbos, P. (1974). Beyond regression: new tools for prediction and analysis in the

behavioral sciences.

Worm, T., & Chiu, K. (2013). Prioritized grammar enumeration: symbolic regression by

dynamic programming. Paper presented at the Proceedings of the 15th Annual

Conference on Genetic and Evolutionary Computation, Amsterdam, The

Netherlands.

Yu, H.-F., Lo, H.-Y., Hsieh, H.-P., Lou, J.-K., McKenzie, T. G., Chou, J.-W., . . . Chen-

Wei, H. (2011). Feature engineering and classifier ensemble for KDD cup 2010.

Paper presented at the JMLR: Workshop and Confrence Proceedings 1: 1-16.

Ziehe, A., Kawanabe, M., Harmeling, S., & Müller, K.-R. (2001). Separation of post-

nonlinear mixtures using ACE and temporal decorrelation. Paper presented at the

Proceedings of the International Workshop on Independent Component Analysis

and Blind Signal Separation (ICA2001).

